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1. Introduction

Spectral perturbation problems in linear operators have been studied extensively due to its
widely applicability, and many elegant results have been obtained (cf,, [1,2]). However, the
classical perturbation theory of linear operator is not available in many cases. For example,
the minimal and maximal operators corresponding to a linear discrete Hamiltonian system
or a linear symmetric difference equation are multi-valued and non-densely defined (cf.
[3,4]). So we should apply the perturbation theory of multi-valued linear operators to study
the above problems. Further, multi-valued linear operator theory may provide some useful
tools for the study of spectral problems of generalized indefinite strings that have a strong
physical background (cf,, [5,6]) and boundary value problems for differential operators [7].
Due to these reasons, it is necessary and urgent to study some topics about multi-valued
linear operators,which are also called linear relations or linear subspaces. They are briefly
called relations or subspaces in the present paper.

Linear relations were introduced by von Neumann [8], motivated by the need to con-
sider adjoint operators of non-densely defined linear differential operators. The operational
calculus of linear relations was developed by Arens [9]. His works were followed by
many scholars, and some basic concepts, fundamental properties, self-adjoint extension,
resolvent, spectrum and perturbation for linear relations were studied (cf., [3,4,7,10-28]).
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Now, we shall recall some existing results about perturbations of essential spectra of lin-
ear relations. In 1998, Cross introduced a concept of essential spectrum of a linear relation
and showed that it is stable under relatively compact perturbation with certain additional
conditions (see[ 16, Theorem VII.3.2]). In 2014, Wilcox gave five distinct concepts of essen-
tial spectra of linear relations in Banach spaces, and proved that they are stable under
relatively compact perturbation with some additional conditions and under compact per-
turbation, separately (see [26, Theorems 4.4 and 5.3]). In 2016, shi obtained the invariance
of essential spectra of self-adjoint relations under compact and relatively compact pertur-
bation with additional conditions, separately (see [20, Theorems 5.1 and 5.2]). Further,
we extended these results to more general perturbations in 2018 (see [28, Theorems 4.1
and 4.2]).

In the present paper, enlightened by the methods used in the study of the stability of
essential spectra of self-adjoint operators, we shall continue to deeply study the pertur-
bations of essential spectra of self-adjoint relations. Especially, we are concerned with the
behavior of gaps in essential spectrum of a self-adjoint relation under a non-negative rel-
atively compact perturbation. It will be shown that some perturbation results about the
essential spectra of linear operators can be naturally extended to linear relations. Here,
the essential spectrum of a linear relation is defined as the subset of its spectrum con-
sisting of either accumulation points or isolated eigenvalues of infinite multiplicity (see
Definition 2.6). Some of the results obtained in the present paper extend the related existing
results about self-adjoint operators to self-adjoint relations (see Remarks 3.9 and 4.4).

The rest of this paper is organized as follows. In Section 2, some notations, basic con-
cepts and fundamental results about linear relations are introduced. In Section 3, the
perturbations of semi-bounded self-adjoint relations are studied. It is shown that the
semi-boundedness of self-adjoint relations is stable under relatively bounded perturba-
tion. Finally, it is proved that the gaps in essential spectrum of a self-adjoint relation is
stable under non-negative relatively compact perturbation in Section 4.

2. Preliminaries

In this section, we shall introduce some basic concepts and fundamental results about
linear relations, which will be used in the sequent sections.

Let X be a Hilbert space over the complex field C with inner product (-, -). The product
space X is still a Hilbert space with the following induced inner product, still denoted by
(-, -) without any confusion

(Ger 1), (02,92)) = (X1, %) + (Y1, 92), (X1, y1),  (x2,p2) € X%

Any linear subspace T C X? is called a linear relation (briefly, relation) of X?. The
domain D(T), range R(T), and null space N(T) of T are defined by

D(T):={x € X: (x,y) € T for some y € X},
R(T):={yeX: (x,y) € T for some x € X},
N(T):={xeX: (x,0) € T},

respectively. Further, denote

Tx):=={yeX: (x,y) € T},
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T~ ={(x): (xy) € T}

By LR(X) denotes the set of all linear relations of X2.

Obviously, we have T(0) = {0} if and only if T can determine a linear operator from
D(T) into X whose graph is T. For convenience, a linear operator (i.e. single-valued
operator) in X will always be identified with a linear relation in X? via its graph.

Let T, A € LR(X) and o € C. Define

aT:={xoay:(xy €T}
TH+A:={(xy+2):(xy eT, (x,2) € A},
T—ol :={(y—ax):(xy) T}
The product of A and T is defined by
AT := {(x,2) € X*: (x,y) € T, (y,2) € A for some y € X}.

Note that if A and T are both operators, then AT is also an operator. If TN A = {(0,0)},
denote
TH+A = {(x1 + x2, 01 + y2) : (x1,31) € T, (x2,)2) € A}

Further, if T and A are orthogonal, that is, ((x, ), (4, v)) = 0 for all (x,y) € T and (4,v) €
A, then denote

T®A:=T+A.
Let X € LR(X). The adjoint of T is defined by
T :={(f.g) € X*: (g,x) = (f,y) forall (x,y) € T}.
We say T is Hermitian in X* if T C T*, and self-adjoint in X* if T = T*.

Lemma 2.1 ([23, Proposition 2.1]): Let T,A € LR(X). Then T = T+ A—A if and only if
A(0) C T(0) and D(T) C D(A).

Lemma 2.2 ([27, Lemma 5.8]): Let T € LR(X) be self-adjoint. If A € LR(X) be Hermitian
and D(T) C D(A), then A(0) C T(0).

Arens gave a decomposition of a closed linear relation T in X2 [9]:
T=Ts® T
where

Too :=1{(0,y) €X*:(0,y) € T}, T := T © Tc.

It can be easily verified that T is an operator if and only if T = T;. Accordingly, Ts and
T are called the operator and pure multi-valued parts of T, respectively. In addition, they
satisfy the following properties [9]:

D(Ty) = D(T), R(Ty) C T(0)L, Too = {0} x T(0).

Let T € LR(X). By Qr, or simply Q when there is no ambiguity about the relation T, denote
the natural quotient map from X onto X/T(0). Clearly, QT is an operator [16]. Further,
denote By := {x € X : x| < 1}.
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Definition 2.3: ([16,23]) Let T € LR(X,Y). For any given x € D(T), the norms of T (x)
and T are defined by

ITGON = 1QDYX) s I Tl == QT = sup{(QT)(x)|| : x € D(T) N Bx},

respectively. If | T|| < oo, T is said to be bounded. Further, T is said to be compact, if QT is
compact.

Lemma 2.4 ([16, Propositions I1.1.4 and I.1.5]): Let T, A € LR(X). Then,

@) IT)| = dist(y, T(0)) = dist(0, T'(x)) for x € D(T) and y € T(x);
(i) [T +AN < NITE)N + A for x € D(T) N D(A);
(iii) (@D)@)| = |alIT)]| fora € C and x € D(T).

Lemma 2.5 ([23, Theorem 2.4]): Let T € LR(X) be closed. Then

TGN = ITs(x)| for x € D(T).
The following concepts were introduced in [9,22].

Definition 2.6: Let T be a linear relation in X2.

(1) Theset p(T) :={x € C: (T — AI)~! is a bounded operator defined on X} is called
the resolvent set of T.

(2) Theseto (T) := C\ p(T) is called the spectrum of T.

(3) For A € C, if there exists (x, Ax) € T for some x # 0, then % is called an eigenvalue of
T, while x is called an eigenvector of T with respect to the eigenvalue A. Further, the
set of all the eigenvalues of T is called the point spectrum of T, denoted by o, (T).

(4) The essential spectrum o.(T) of T is the set of those points of o (T) that are either
accumulation points of o (T) or isolated eigenvalues of infinite multiplicity.

Lemma 2.7 ([22, Proposition 2.1 and Theorems 2.1, 2.2 and 3.4]): Let T be a closed
Hermitian relation in X2. Then T = T N (T(0)1)? is a closed Hermitian operator in T(0)+,
and

0 (T) = 0 (Ts), 0e(T) = 0¢(Ts) 0p(T) = 0p(T5)
N(T — Al) = N(T; — AD), & € a,(T). (1)

Lemma 2.8 ([29, p. 26]): If T'is a self-adjoint relation in X2, then Ts and Tw, are self-adjoint
relations in (T(0)1)? and T(0)?, respectively.

In the following, we shall recalled the concept of spectral family of a self-adjoint relation,
which was introduced by Coddington and Dijksma in [15].
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Let T be a self-adjoint relation in X2. By Lemma 2.8, Ty is a self-adjoint operator in
T(0)*. Then T has the following spectral resolution:

Ts = / tdEs(t)’
where {Es(t)};eR is the spectral family of T in T(0)*. The spectral family of the relation T
is defined by
E)=Et)® 0, teR, (2)

where O is the zero operator defined on T'(0). Denote
E(N)x := / dE(Hx, NCR, xeX.
N

Lemma 2.9: ([22, Theorem 3.9]) Let T € LR(X) be self-adjoint.

(i) Ifa<banddim R(Es(b—) — Es(a)) = m, then o (T) N (a, b) consists of only isolated
eigenvalues of finite multiplicity, and the sum of the multiplicities of these eigenvalues is
equal to m

(ii) Ifdim R(Es(b) — Es(a)) = o0, then o,(T) N [a, b] # ?.

Remark 2.10: Note that R(E(t)) = R(E;(t)) for every t € R by (2), the conditions about
{E;(t)}ter in Lemma 2.9 can be replaced by {E() };cr.

3. Perturbations of the semi-boundedness of self-adjoint relations

In this section, we shall discuss the stability of the semi-bundedness of self-adjoint relations
under relatively bounded perturbation. We shall first introduce the concepts of relative
boundedness and relative compactness of linear relations.

Let T € LR(X) and X7 denote the space (D(T), || - ||T), where

lxllr = llxll + T, x € D(T).

Define Gt : X7 — X by Gr(x) = x for x € X7. Gr is called the graph operator of T.
Definition 3.1: [16, Definition VII.2.1] Let T, A € LR(X) with D(T) C D(A).

(1) The linear relation A is said to be T-bounded if there exist non-negative numbers a
and b such that

[AGI < allx|l + bIT )|, x € D(T). (3)

If A is T-bounded, then the infimum of all numbers b > 0 for which (3) holds with a
constant a > 0 is called the T-bound of A.

(2) The linear relation A is said to be T-compact (or relatively compact to T) if AGr is
compact, i.e. A : X7 — X is compact.
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Lemma 3.2 ([27, Theorem 5.2]): Let T € LR(X) be self-adjoint and A € LR(X) be Hermi-
tian with D(T) C D(A). If A is T-bounded with T-bound< 1, then T+ A is also self-adjoint
in X2

Next, we recall the definition of lower bounded Hermitian relations, which was intro-
duced in [14].

Definition 3.3: Let T be an Hermitian relation in X2.
(1) T is said to be bounded from below (above) if there exists a constant ¢ € R such that
1o x) = cllxl*((n,x) < cllxl?), Y(xy) €T,

while such a constant ¢ is called a lower (upper) bound of T.
(2) T is said to be non-negative (non-positive) if 0 is a lower (upper) bound of T.

Lemma 3.4 ([22, Theorem 3.2]): Let T € LR(X) be self-adjoint. Then T is bounded from
below if and only if its spectrum is bounded from below. Moreover, the greatest lower bound
of T is equal to min o (T).

Lemma 3.5 ([21, Theorem 3.5]): Let T € LR(X) be self-adjoint. Then, for each z € p(T),
we have that

I(T = 27! = [dist(z, o (T)] " (4)
Lemma 3.6: Let T € LR(X) be closed and Hermitian. Then

_ _ It]
IT(T -2 = ITs(Ts —2) "' = sup ,
teo(T) It — 2|

z € p(T). (5)

Proof: Since T is closed, T(0) is a closed subspace in X. Suppose that z € p(T). It follows
from (1) that z € p(Ty), i.e. (Ts — z)~! is a bounded operator defined on T(0)~. For any
given x € X, it can be decomposed as x = x; + x, with x; € T(0)* and x, € T(0). Then
(T —2)"Y(x) = (Ts — 2) " L(x1) by [28, Corollary 3.3], which together with Lemma 2.5
implies that

IT(T =27 @) = IT(Ts — 2) ' (x|
= | Ts(Ts — 2) " (x| < [ITo(Ts — 2~ I xl.
Thus, | T(T —2)7 ') < IT«(Ts — 2) 7.
On the other hand, for any x € T(0)1, we have (Ts — 2)"1(x) = (T — 2) "1 (x). Again
by Lemma 2.5, we obtain
IT(Ts — 2) ' Wl = | T(T — 2~ W)
= T(T—2)"' @ < IT(T —2)~||x].
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Consequently, || Ts(Ts — z) || < | T(T — z)~!||. Hence we have
IT(T —2)7 | = IT(Ts — 2) 7.

For the second equality in (5), it directly follows from Lemma 2.7 that T, is a
closed Hermitian operator in T(0)L. Then ||Ts(Ts —2) Y| = SUPcy (1) % by (3.17) in
(1, p-273].

Therefore, (5) holds and this completes the proof. |

Theorem 3.7: Let T € LR(X) be self-adjoint and bounded from below, and A € LR(X) be
Hermitian with D(T) C D(A) and T-bound with T-bound < 1. Then T+ A is self-adjoint
and bounded from below. If Br is a lower bound of T and the inequality (3) holds with b < 1,
then

,3=/3T—max{ba

>
—a

a-+ b|ﬂT|} (6)
is a lower bound of T + A.

Proof: The self-adjointness of T + A is known by Lemma 3.2. By Lemma 3.4, it suffice to
show that (—o0, 8) C p(T 4+ A). Givenany A < B, wehave A € p(T) again by Lemma 3.4.
It follows from (3), (4) and (5) that
JACT =) 7H < all(T— )7+ I T(T — 07|
1 |t

=q————+b su
dist(A, o (T)) tEU(I?F) |t — Al

<a(Br — B)~' + bmax{L, |Br|(Br — )7} < L.

Note that A(0) C T(0) by Lemma 2.2. It follows from [27, Theorem 3.1] that A € p(T +
A). The proof is complete. n

Theorem 3.8: Let T € LR(X) be self-adjoint and non-negative, and A € LR(X) be Hermi-
tian with D(T) C D(A). If |A(x)|| < | T(x)|| for all x € D(T), then

[{(x, )] < (x,2) for all (x,y) € Aand (x,2) € T.
Proof: Let S = kA for every k € (—1,1). Then S is Hermitian and T-bounded with
T-bound< 1. Note that T is non-negative, we can take a = 0,b = |k|, and 7 =0 in
Theorem 3.7. Hence 8 = 0, which yields that T + kA is a self-adjoint and non-negative lin-

ear relation in X2 for every k € (—1, 1). Consequently, for every (x,y) € A and (x,2) € T,
we have that

(x,z + ky) > 0 for any k € (—1,1).
By letting k — =1, we can obtain that
(¢, z4+y) > 0and (x,z—y) > 0forall (x,y) € A (x,2) € T.

Hence, |(x, y)| < (x,z) for all (x,y) € A and (x,z) € T. This completes the proof. |

Remark 3.9: Theorems 3.7 and 3.8 generalizes Theorems 9.1 and 9.3 of [2] for liner
operators to linear relations, respectively.
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4. Gaps in the essential spectra of linear relations under some perturbations

In this section, we shall consider the behavior of gaps in the essential spectra of linear
relations under a non-negative relatively compact perturbation.

Lemma 4.1 ([28, Corollary 4.2]): Let T € LR(X) be self-adjoint and A € LR(X) be Her-
mitian such that D(T) C D(A). Assume that A is T-bounded, T + A is self-adjoint and A is
T"-compact for some n > 0. Then o.(T) = c.(T + A).

The following result is a generalization of [2, Theorem 7.25] for self-adjoint operators
to self-adjoint relations.

Lemma 4.2: Let T € LR(X) be self-adjoint and X = X; & Xp & X3 with dimX3 =m <
00. Assume that the projection Pj onto Xj maps D(T) into itself, i.e. P;D(T) C D(T) forj = 1,
2,3.1f

. y) < allx|*> for (x,y) € T with x € P;D(T),
Y1 > blx|? for (x,y) € T with x € P,D(T),

then (a, b) N o (T) consists of only isolated eigenvalues; the sum of the multiplicities of these
eigenvalues is at most m.

Proof: Suppose that dim R(E(b—) — E(a)) = dim R(Es(b—) — Es(a)) > m + 1. Then,
there exists x € R(E(b—) — E(a)) N Xﬁ- such that x = 0. Thus, x can be decomposed as
Xx = x1 + X, where x; = P1x € P1D(T) and x, = P,x € P,D(T). Let c = (a + b)/2. We
have

b b—
I(Ts — o) (®)|I> = f (t — o)*d||Es(t)x||* < (T“)anuz. (7)

Since P; and P, map D(T) into itself and T is self-adjoint, we have that x1,x, € D(T) C
T(0)~*. Let (x1,y1) € T and (x2,¥2) € T. Then (x,y) € T with y = y1 + y; and (x,y1) =
(y,x1) by the self-adjointness of T. Consequently,

bllxall® < (x2,y2) = (x2,9) — (x — x1,1)

= (x2,) — (¥, x1) + {x1, 1)

< c(lxll® = I l®) + (2,y — ex) = (y — cx, x1) + alla|®

b—a

= b|lx2||* — lxl? + (x2,y — ex) — (y — cx, x1). (8)

Note that there exists « € C with |o| = 1 such that (y — cx,x1) = a{x1, y — cx). It follows
from (7) that

[(x2,y — ex) — {y — ex, )| = [(x2 — ax1, y — ex)|
= [{(x2 — ax1, (Ts — ()| = [lx2 — ax1[[[(Ts — ) )l

b—a

= (I lI* + I IDY2I(Ts — )l = IxllI(Ts — )|l < [l]].
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This together with (8) implies that b||x, > < b||x2]|2, which is a contradiction. Therefore,
dim R(E(b—) — E(a)) = dim R(Es(b—) — Es(a)) < m + 1, and then (a,b) No(T) con-
sists of only isolated eigenvalues, and the sum of the multiplicities of these eigenvalues
is at most m by Lemma 2.9. The proof is complete. |

Theorem 4.3: Let T € LR(X) be self-adjoint such that .(T) N (c,d) = 0. Assume that d
is not an accumulation point of those eigenvalues of T that belong to (c,d). Further, let
A € LR(X) be Hermitian and non-negative with D(T) C D(A). If A is T2—c0mpact and
T-bounded with T-bound< 1. Then

(@) oo(T+A)N(d) =0
(ii) d is not an accumulation point of those eigenvalues of T+ A that belong to (c, d).

Proof: (i) It directly follows from Lemma 3.2 that T+ A is a self-adjoint linear relation
in X2. By the assumption that A is T?-compact, we can obtain that oo(T) = 0,(T + A) by
Lemma 4.1. Therefore, the first assertion in Theorem 4.3 holds.

(if) Without loss of generality, we can assume that (c,d) = (—1,1). Science A is T-
bounded with T-bound< 1, there exist a > 0 and 0 < b < 1 such that (3) holds. It
follows from Lemma 2.1 that A(0) C T(0). Hence, for every s € [0,1], we have that
T = T 4 sA—sA by Lemma 2.2. By (3) and Lemma 2.4, we can obtain that

A < allx]| + bI(T + sA — sA) ()|
< allx]| 4+ bII(T + sA) () || + sbIIA)].

This together with the fact that sb < 1 implies that

a

A
A < T

b
[l + 1—||(T—|—5A)(x)||. 9)
—sb

Further
a a b

b
max = and max = —.
selo,]]1—sb  1—0b sel0,]]1—sb  1—0b

Set y = max{;%, 1Thh} + 1. Then y > 0 and for every s € [0, 1], we can get that
A < yIxll + (T +sA)X) ), x e D). (10)

Let sy € [0, 1] be chosen such that 1 is not an accumulation point of eigenvalues of T + spA
belonging to (—1, 1). Obviously, this holds for sp = 0 in any event. One can easily show that
T + soA is self-adjoint and 0. (T + spA) N (—1,1) = 6.(T) N (—1,1) = ¥ by Lemmas 3.2
and 4.1. Let Ey and Ey denote the spectral family of T + spA and its operator part (T +
s0A)s, respectively. Then

dim R(Eyp(1—) — Eo(0)) = dim R(Eps(1—) — Ep(0)) < 00

by (ii) of Lemma 2.8 and Remark 2.10.
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Let x € R(Ep(0)) N D(T) = R(Ep,(0)) N D(Ts). For every (x,y) € Aand (x,2) € T, we
have (x,z 4 soy) € T + spA. Then
0
(x,z+s0y) = (% (T + s04)s(x)) = / td(Eo,s(£)x, x) < 0. (11)

—00

This yields that the linear relation (T + soA)|r(£y(0))nD(T) is non-positive. Consequently,
(I = T — s0A)|R(Ey0))nD(T) is non-negative. By Lemma 2.5 and [28, Proposition 3.2], we
have that

(I =T — s0A) () 1* = |1 — (T + s0A)s) () |12
= |lx — (T + spA)s (%) ||*

= (%) — 2(x, (T + 50A)5(x)) + (T + 50A)s(x), (T + s0A)5(x))
0
= |lxl1® + [I(T + soA)s(x) 1> — 2 / td(Eo,s(t)x, x)

o
> [|x]|* + [I(T + soA)s ()|
This together with (10) implies that
IAG@) (1> < 47> lx] + (T + s0A)s@)1*) < 4y [T = T — s0A) ()|,
Hence,
IAGI < 271 = T — s0A)@)]I.

Note that A and (I — T — soA)|r(g,(0))nD(T) is non-negative. It follows from Theorem 3.8
that

(%) < 2y{x,x —z — s0y) (12)

for every (x,y) € A and (x,z) € T withx € R(Ey(0)) N D(T).
Lets > so with s —so < 1/(4y). By (10), we have

1
(s = s0)A)| < Z(lell + [I(T + s0A) () [D). (13)
Note that the relation T + spA is self-adjoint. Hence, T + sA = (T + spA) + (s — sp)A is
a self-adjoint relation in X? by Lemma 3.2. For every (x,y) € A and (x,2) € T with x €
R(E(p(0)) N D(T), by (11) and (12), we can obtain that
(%2 +sy) = (6,2 + s0y) + (s — s0) (%, )

1 1
< (% z+ soy) + E(x,w < (x,z + soy) + 5<x,x—z—50y>

[E15 (14)

N | =

= Loz s + Sl <
=5 toz+soy) + S lxl" =
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On the other hand, for every (x,y) € A and (x,z) € T withx € R(I — Eq(1—)) N D(T),
we have

(6,24 sy) = (x, 2+ s0y) + (s — s0) (%, ¥) = (x,2 + s0)) (15)

since A is non-negative. Set f =z + 5oy, it can be decomposed as f = f; + f,, where
fi e T(0)* and f, € T(0). Note that (T + soA)(0) = T'(0) by Lemma 2.2. Then f; = (T +
s0A)s(x), and consequently,

(%f) = (6.f1) = (% (T + s0A)s(x)) = f1 +°O td(Eo(£)x, x)
= | — Eos(1-) @) 1> = [Ix[I?
by Lemma 2.7. Thus
(xz+sy) = [Ix]I%.

This together with (14) and Lemma 4.2 implies that ( %, 1) N o (T + sA) consists of only
isolated eigenvalues, and thus 1 is not an accumulation point of the eigenvalues of T + sA
from (—1, 1).

Let m € Nsatisfym > 4c,and u = 1/m. Then pu < 1/(4c). By settingsp = Oand s = p,
we can obtain that 1 is not an accumulation point of the eigenvalues of T + A from
(—1,1) by the above proof. Let so = p and s = 2u, one can also get that 1 is not an accumu-
lation point of the eigenvalues of T + 21A from (—1, 1) again by the above proof. We can
proceed step by step. Then 1 is not an accumulation point of the eigenvalues of T + 3 A,
T+ 4pA,---, T+ muA = T + A from (—1, 1). This completes the proof. |

Remark 4.4: Theorem 4.3 extend [2, Theorem 9.14] for linear operators to linear relations.

Remark 4.5: Note that the essential spectrum of a self-adjoint can be only determined
by its operator part (Lemma 2.7). So it is natural to take into account perturbations of
operator parts of the unperturbed and perturbed linear relations. However, the operator
part of a summation of two closed linear relation is not equal to the summation of their
operator parts in general (see Example 4.6). In our fourth coming paper, we shall discuss the
relationships between perturbations of operator parts of the unperturbed and perturbed
linear relations.

Example 4.6: Let X := 1> = {x = {x;}22, C C: Y, [xi|* < oo} with the inner product
o0
(y) = xigp x={x}Z, y={Z X
i=1

For each n > 1, let e, = {ey;};°, € X with ey, = 1 and e,; = 0 for all i # n. Further, let
X; = (spanf{e )t = {x = {xi}2, € X: x1 =0}
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Define
T={(xx+ce): xe€X;, ceC},
and define the operator A by :
A(X)l = X2, A(x)z = X1, A(X)i - Oa i > 3> X = {xi}l'oil e X. (16)

Then D(T) = X; C D(A) = X and T(0) = span{e;}. So T is multi-valued. It follows from
[28, Example 4.1] that T is a self-adjoint linear relation in X2
Now, we show that A is Hermitian. For any x = {x;}7°,,y = {yi}72, € X, we have that

(6 AQW) = (A),y) = y2x1 + y1X2,

which implies that A is Hermitian.
Note that A isbounded. Hence, A is T-bounded with T-bounded zero, and consequently,
T + A is self-adjoint in X? by Lemma 3.2. On the other hand,

T+A={(xx+Ax) +ce): xeX;, ceC},
and
D(T 4+ A) = D(T) = X; C D(A), (T + A)(0) = T(0) = spanfe,}.
Thus, (T + A)(0)* = T(0)* = X;. By Lemma 2.7, one can get that
(T + A)s = (T+A) N (T+A)O0)) = (T +A)NnX3

Hence, (x,x + A(x) + ce;) € (T + A), if and only if x; € X; and x + A(x) + ce; € X;.
Note that x € D(T) = X, we have that (x,x + A(x) + ce;) € (T + A); if and only if
A(x) + ce; € X;, which equivalent to A(x); 4+ ¢ = 0, that is x, + ¢ = 0 by (16), which
implies that ¢ = —x;,. Therefore,

(TH+ A)s(x) =x+ Alx) — x2e1, x € X]. (17)
In addition, it is obviously that
Ts(x) =x, xé€Xj. (18)
It follows from (16)-(18) that

(T4 A)s(x) # Ts(x) + A(x), x € X; with x; # 0.

Remark 4.7: As we have mentioned in the introduction, it is very important to study
spectral properties of multi-valued operators because the minimal and maximal operators
corresponding to a linear symmetric difference equation are multi-valued and non-densely
defined (cf. [3,4]). The results obtained in the present paper may be available in this
case. We shall apply these results to study invariance of essential spectra for second-order
symmetric difference equations under some perturbations in our forthcoming paper.
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