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­is paper is concerned with the relatively bounded perturbations of a closed linear relation and its adjoint in Hilbert spaces. A
stability result about orthogonal projections onto the ranges of linear relations is obtained. By using this result, two perturbation
theorems for a closed relation and its adjoint are given. ­ese results generalize the corresponding results for single-valued linear
operators to linear relations and some of which weaken certain assumptions of the related existing results.

1. Introduction

Perturbation theory is one of the main topics in both pure
and applied mathematics. In particular, the perturbations of
linear operators (i.e., single-valued operators) have received
lots of attention and many useful results have been obtained
(cf. [1–4]).

However, when considering the adjoint of a nondensely
de�ned linear operator and the minimal and maximal op-
erators corresponding to a linear discrete Hamiltonian
system or a linear symmetric di�erence equation (cf. [5, 6]),
the classical perturbation theory of linear operator is not
available in these cases. So, we should apply the perturbation
theory of multivalued linear operators to study the above
problems. Further, multivalued linear operator theory may
provide some useful tools for the study of some Cauchy
problems associated with parabolic type equations in Banach
spaces [7] and boundary value problems for di�erential
operators [8]. Due to these reasons, it is necessary and urgent
to study some topics about multivalued linear operators,
which are a necessary foundation of research on those re-
lated problems about di�erential or di�erence operators.

Note that the graph G(T) of a linear operator or mul-
tivalued linear operator T from a linear space X to a linear
space Y is a linear subspace in the product space X × Y.
Further, it is more convenient to introduce concepts of the

inverse, closure, and adjoint for linear subspaces. So, we shall
directly study linear subspace (brie¡y, subspace) in the
product space X × Y. A subspace is also called a linear re-
lation (brie¡y, relation). A linear operator always means a
single-valued linear operator for convenience in the present
paper.

To the best of our knowledge, linear relations were in-
troduced by von Neumann [9], motivated by the need to
consider adjoint operators of nondensely de�ned linear
di�erential operators. ­e operational calculus of linear
relations was developed by Arens [10]. His works were
followed by many scholars, and some basic concepts, fun-
damental properties, self-adjoint extension, resolvent,
spectrum, and perturbation for linear relations were studied
(cf. [5–8, 11–26]).

­ere are still many important fundamental problems
about linear relations that have neither been studied nor
completed. It is shown that the closedness and self-
adjointness of linear relation are stable under relatively
bounded perturbation (cf. [22, 25]). However, they have not
been speci�cally and thoroughly studied. In the present
paper, enlightened by the methods used in [4], we shall
deeply study the stability of a closed linear relation and its
adjoint under more general relatively bounded perturbation
in Hilbert spaces. ­e spacesX and Y are always assumed to
be Hilbert spaces throughout the present paper. ­e results
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obtained in the present paper not only cover the related
existing results about operators but also some of them
weaken the conditions of the corresponding existing results
(see Remarks 1 and 2).

+e rest of this paper is organized as follows. In Section
2, some notations, basic concepts, and fundamental results
about linear relations are introduced. In Section 3, we first
give in +eorem 1 a stability result about orthogonal pro-
jections onto the ranges of linear relations, which generalize
the corresponding result ([4], +eorem 5.25) for linear
operators to linear relations. +en, we investigate the rela-
tively bounded perturbations of a closed linear relation and
its adjoint. It is shown that the adjoint of the sum of two
linear relations is equal to the sum of each adjoint (see
+eorem 3).

2. Preliminaries

In this section, we shall introduce some basic concepts and
give some fundamental results about linear relations, which
will be used in the sequent sections.

Let X and Y be Hilbert spaces over the complex field C.
+e norm of X × Y is defined by

‖(x, y)‖ � ‖x‖
2
X +‖y‖

2
Y􏼐 􏼑

1/2
, x ∈ X, y ∈ Y, (1)

where ‖ · ‖X and ‖ · ‖Y are the norms of the spaces X and Y,
respectively, still denoted by ‖ · ‖ without any confusion.+e
inner product of X × Y is defined by

〈 x1, y1( 􏼁, x2, y2( 􏼁〉 �〈x1, x2〉 +〈y1, y2〉,

x1, y1( 􏼁, x2, y2( 􏼁 ∈ X × Y.
(2)

Let E ⊂ X, E⊥ denotes the orthogonal complement of E.
Any linear subspace T ⊂ X × Y is called a linear relation

(briefly, relation or subspace) of X × Y.LR(X, Y) denotes the
set of all linear relations of X × Y. In the case that X � Y,
LR(X) denotes LR(X, X) briefly.

+e domain D(T), range R(T), and null spaceN(T) of T

are, respectively, defined by

D(T) ≔ x ∈ X: (x, y) ∈ T for somey ∈ Y􏼈 􏼉,

R(T) ≔ y ∈ Y: (x, y) ∈ T for somex ∈ X􏼈 􏼉,

N(T) ≔ x ∈ X: (x, 0) ∈ T{ }.

(3)

A linear relation T is said to be injective if N(T) � 0 and
surjective if R(T) � Y. Further, denote

T(x) ≔ y ∈ Y: (x, y) ∈ T􏼈 􏼉,

T
− 1 ≔ (y, x): (x, y) ∈ T􏼈 􏼉.

(4)

It is evident that T(0) � 0{ } if and only if T can uniquely
determine a linear operator from D(T) into Y whose graph
is T. For convenience, a linear operator (i.e., single-valued
operator) from X to Y will always be identified with a re-
lation in X × Y via its graph. In addition, N(T) � 0{ } if and
only if T− 1(0) � 0{ }, i.e., T is injective if and only if T− 1 is a
linear operator. Further, T is said to be closed if T � T, where
T is the closure of T.

Let T, A ∈ LR(X, Y) and α ∈ C. Define

αT ≔ (x, αy): (x, y) ∈ T􏼈 􏼉,

T + A ≔ (x, y + z): (x, y) ∈ T, (x, z) ∈ S􏼈 􏼉,

T − α ≔ (x, y − αx): (x, y) ∈ T􏼈 􏼉 in the case thatY � X.

(5)

If T∩A � (0, 0){ }, denote

T _+A ≔ x1 + x2, y1 + y2( 􏼁: x1, y1( 􏼁 ∈ T, x2, y2( 􏼁 ∈ A􏼈 􏼉.

(6)

Further, if T and A are orthogonal, that is,
〈(x, y), (u, v)〉 � 0 for all (x, y) ∈ T and (u, v) ∈ A, then
denote

T⊕A ≔ T _+A. (7)

+e product of linear relations T ∈ LR(X, Y) and
A ∈ LR(Y, Z) is defined as follows (see [10]):

AT ≔ (x, z) ∈ X × Z: (x, y) ∈ T,􏼈

(y, z) ∈ A for somey ∈ Y}. (8)

Note that if A and T are operators, then AT is also an
operator.

Definition 1. Let T ∈ LR(X, Y). +e adjoint T∗ of T is
defined as a relation from Y to X by

T
∗ ≔ (f, g) ∈ Y × X: 〈g, x〉 � 〈f, y〉 for all (x, y) ∈ T􏼈 􏼉.

(9)

T is said to be Hermitian in X2 if T ⊂ T∗ and said to be
self-adjoint in X2 if T � T∗

Let U be the flip-flop operator from X × Y to Y × X

defined by

U(x, y) � (y, − x), (x, y) ∈ X × Y. (10)

It is clear from Definition 1 that

T
∗

� (UT) � UT, (11)

where the orthogonal complements refer to the component
wise inner product in Y × X and X × Y, respectively.

Next, we shall briefly recall the concepts of bounded and
relatively bounded relations, which were introduced in [17, 22].

Let T ∈ LR(X, Y). By QT, or simply Q, when there is no
ambiguity about the relation T, denote the natural quotient
map from Y onto Y/T(0). Clearly, QT is an operator [17].
Further, denote BX ≔ x ∈ X: ‖x‖≤ 1{ }.

Definition 2. Let T ∈ LR(X, Y). For any given x ∈ D(T), the
norms of T(x) and T are defined by

‖T(x)‖ ≔ ‖(QT)(x)‖, ‖T‖ ≔ ‖QT‖

� sup ‖(QT)(x)‖: x ∈ D(T)∩BX􏼈 􏼉,

(12)
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respectively. If ‖T‖〈∞, T is said to be bounded.

Definition 3. Let T and A be two linear relations in X × Y

with D(T) ⊂ D(A). +e linear relation A is said to be T

-bounded if there exist nonnegative numbers a and b such
that

‖A(x)‖≤ a‖x‖ + b‖T(x)‖, x ∈ D(T). (13)

If A is T-bounded, then the infimum of all numbers b≥ 0
for which (13) holds with some constant a≥ 0 is called the
T-bound of A .

Lemma 1 (Propositions II.1.4 and II.1.5 in [17]). Let T and S

be two linear relations in X × Y. -en,

(i) ‖T(x)‖ � d(y, T(0)) � d(0, T(x)) for every
x ∈ D(T) and y ∈ T(x)

(ii) ‖T(x) + S(x)‖≤ ‖T(x)‖ + ‖S(x)‖ for every
x ∈ D(T + S)

(iii) ‖αT(x)‖ � |α|‖T(x)‖ for α ∈ C and x ∈ D(T)

Note that the norm ‖T(x)‖ is not a real norm since the
following inequality may not hold in general (see Exercise
II.1.12 in [17]):

‖(S − T)(x)‖≥ ‖S(x)‖ − ‖T(x)‖, x ∈ D(S)∩D(T). (14)

However, it holds under some conditions.

Lemma 2 (Theorem 2.3 in [22]). Let T, S ∈ LR(X, Y) satisfy
that D(S) ⊂ D(T) and T(0) ⊂ S(0). -en,

‖(S − T)(x)‖≥ ‖S(x)‖ − ‖T(x)‖, x ∈ D(S). (15)

3. Main Results

In this section, we shall investigate the relatively bounded
perturbations of a closed linear relation and its adjoint. For
this purpose, we need to discuss the stability of orthogonal
projections onto the ranges of linear relations.

We first give the following auxiliary results about linear
operators.

Lemma 3 (Theorem 4.3 in [4]). Let T be an operator from X

to Y and M be a subspace of Y satisfying that R(T) ⊂M.
-en,

‖T(x)‖ � sup |〈Tx, y〉|: y ∈Mwith‖y‖ � 1􏼈 􏼉, x ∈ D(T).

(16)

Lemma 4 (Theorem 4.33 in [4]). Let P1 and P2 be two
orthogonal projections acting on X. -en, we have

P1 − P2
����

���� � max ρ12 ρ21􏼈 􏼉, (17)

where

ρj,k � sup Pjh
�����

�����: h ∈ R Pk( 􏼁, ‖h‖≤ 1􏼚 􏼛. (18)

Theorem 1. Let A, B ∈ LR(X, Y) satisfying D(A) ⊂ D(B)

and B(0) ⊂ A(0). Assume that there exists a constant c≥ 0
such that

‖B(x)‖≤ c‖A(x)‖for x ∈ D(A). (19)

For every k ∈ C, let Pk denote the orthogonal projection
onto R(A + kB). +en, ‖Pk − P0‖⟶ 0 as k⟶ 0.

Proof. Suppose that D(A) ⊂ D(B) and B(0) ⊂ A(0). It
follows from (Proposition 2.1 in [22]) that

A � A + kB − kB, (20)

for every k ∈ C. □

Case 1. (c〉0). Let 0〈 |k|〈 (1/2c). For any x ∈ D(A), it fol-
lows from (19), (20), and Lemma 1 that

‖B(x)‖ ≤ c‖(A + kB − kB)(x)‖

≤ c‖(A + kB)(x)‖ + c|k|‖B(x)‖

≤ c‖(A + kB)(x)‖ +
1
2

􏼒 􏼓‖B(x)‖.

(21)

+us,

‖B(x)‖≤ 2c‖(A + kB)(x)‖. (22)

Let Y � R(A + kB)⊕R(A + kB). Given any
h ∈ R(P0) � R(A). It can be decomposed as h � h1 + h2,
where h1 ∈ R(A + kB) and h2 ∈ R(A + kB). Let (x, g) ∈ A +

kB with ‖g‖ � 1.+ere exist g1, g2 ∈ Y such that (x, g1) ∈ A,
(x, g2) ∈ B, and g � g1 + kg2. By (i) of Lemma 1, we have
that for any ϵ〉0, there is w ∈ B(x) such that

‖w‖〈‖B(x)‖ + ϵ. (23)

+is together with Lemma 1, (22), and the fact that
g ∈ R(A + kB) implies that

‖w‖< 2c‖(A + kB)(x)‖ + ϵ

≤ 2c‖g‖ + ϵ � 2c + ϵ.
(24)

Since (x, w), (x, g2) ∈ B. We have (0, g2 − w) ∈ B.
Hence, (0, g2 − w) ∈ A by the assumption that B(0) ⊂ A(0).
Consequently, (0, k(g2 − w)) ∈ A. Further, noting that
(x, g1) ∈ A, we can get that (x, g1 + k(g2 − w)) ∈ A. +en,

〈Pkh, g〉 �〈h1, g〉 � 〈h, g〉 �〈h, g1 + kg2〉

​ ​ ​ ​ �〈h, g1 + k g2 − w( 􏼁 + kw〉 � 〈h, kw〉 � k〈h, w〉.
(25)

It follows from (24) that

〈Pkh, g〉
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤ |k|‖h‖‖w‖〈 (2c + ϵ)|k|‖h‖. (26)

+erefore,

Pkh
����

����≤ 2c|k|‖h‖, (27)

by the arbitrariness of ϵ and Lemma 3.
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On the other hand, for any h′ ∈ R(Pk) � R(A + kB), we
can prove in a completely analogous way that

P0h′
����

����≤ c|k| h′
����

����, (28)

which together with (27) and Lemma 4 yields that
‖Pk − P0‖≤ 2c|k|. +erefore, ‖Pk − P‖0⟶ 0 as k⟶ 0.

Case 2. (c � 0). In this case, condition (19) turns into
‖B(x)‖ � 0. +en, ‖w‖〈 ϵ by (23). +is together with (25)
implies that |〈Pkh, g〉|≤ |k|‖h‖‖w‖〈 ϵ|k|‖h‖. Since ϵ is ar-
bitrary, we have that ‖Pkh‖ � 0. Similarly, we can obtain that
‖P0h′‖ � 0 for every h′ ∈ R(A + kB). +erefore,
‖Pk − P0‖ � 0. +is completes the proof.

Remark 1. +eorem 1 is a generalization of +eorem 5.25 in
[24] for operators to linear relations.

Next, we shall discuss the perturbations of a closed linear
relation and its adjoint. We first recall a stability result of the
closedness for linear relations.

Lemma 5 (Theorem 6.3 in [22]). Let T, S ∈ LR(X, Y) satisfy
that D(T) ⊂ D(S) and S(0) ⊂ T(0). If S is T-bounded with
T-bound less that 1, then T + S is closed if and only if T is
closed.

Theorem 2. Let T, S ∈ LR(X, Y) satisfy that D(T) ⊂ D(S)

and S(0) ⊂ T(0). Assume that T is closed and S is T-bounded
with T-bound b. Further, if b〉0, set

Ω � |z|〈
1
b
: T + zS is closed􏼚 􏼛. (29)

If b � 0, set

Ω � |z| ∈ C: T + zS is closed{ }. (30)

+en,

(i) +e set Ω is open.
(ii) For every z ∈ Ω, let Qz denote the orthogonal

projection from X × Y onto T + zS. +en, Qz is
continuous on Ω (with respect to the norm topology
of B(X × Y), where B(X × Y) denote the bounded
operators on X × Y).

Proof

(i) Suppose that T is closed and S is T-bounded with
T-bound b. Set

Φ ≔ r≥ 0: there exists a≥ 0 such that‖S(x)‖≤ a‖x‖{

+ r‖T(x)‖, x ∈ D(T)}.

(31)

+en, b � inf r: r ∈ Φ{ }. Note that for every z ∈ C,
we have D(T + zS) � D(T) ⊂ D(S) and
S(0) ⊂ (T + zS)(0) � T(0). +en, by Lemma 2, one
has that

‖(T + zS)(x)‖ ≥ ‖T(x)‖ − ‖(zS)(x)‖ � ‖T(x)‖ − |z|‖S(x)‖.

(32)

+is implies that

− |z|‖S(x)‖≤ ‖(T + zS)(x)‖ − ‖T(x)‖. (33)

Let b〉0. Given any z0 ∈ Ω. +ere is ϵ> 0 such that
|z0|〈 1/(b + ϵ). By the definition of infimum, there
exists r1 ∈ Φ such that r1〈 b + ϵ〈 1/|z0|. +us,
r1|z0|〈 1. Further, there is a constant a1 ≥ 0 such that
‖S(x)‖≤ a1‖x‖ + r1‖T(x)‖, which together with (33)
yields that

1 − r1 z0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑‖S(x)‖≤ a1‖x‖ + r1 T + z0S( 􏼁(x)
����

����. (34)

If b � 0, for every z0 ∈ Ω, there exist r2 ∈ Φ and a2 ≥ 0
such that r2〈 1/|z0| and ‖S(x)‖ ≤ a2‖x‖ + r2‖T(x)‖.
Again, by (33), we get that

1 − r2 z0
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼐 􏼑‖S(x)‖≤ a2‖x‖ + r2 T + z0S( 􏼁(x)
����

����, (35)

which together with (34) yields that S is
T + z0S-bounded. Hence, T + zS is closed for z suf-
ficiently near to z0 by Lemma 5. +erefore,Ω is open.

(ii) Define the linear relations A, B ∈ LR(X, X × Y) by

A(x) � x, f + z0g( 􏼁: (x, f) ∈ T, (x, g) ∈ S􏼈 􏼉,

B(x) � (0, h): (x, h) ∈ S{ },
(36)

for every x ∈ D(T). Obviously, D(A) � D(B) �

D(T), A(0) � 0{ } × T(0), and B(0) � 0{ } × S(0).
+us, B(0) ⊂ A(0). Further, it is easy to verify that

‖A(x)‖ � T + z0S( 􏼁(x)
����

���� +‖x‖,

‖B(x)‖ � ‖S(x)‖,
(37)

and

R(A) � T + z0S, R(A + kB)

� T + z0 + k( 􏼁S.
(38)

Note that S is T + z0S-bounded.+en, there is a constant
c≥ 0 such that ‖B(x)‖ ≤ c‖A(x)‖. +erefore, Qz is contin-
uous on Ω by +eorem 1. +e proof is complete.

In the following, we shall give a general perturbation
result about a closed linear relation and its adjoint. □

Lemma 6 (Theorem 4.30 in [4]). Let M and N be closed
subspace of X, and let PM and PN be the orthogonal pro-
jections onto M and N, respectively. -en, M⊥N if and only
if PMPN � 0 (or PNPM � 0) and if and only if PM + PN is an
orthogonal projection.

Theorem 3. Let T, S ∈ LR(X, Y) satisfy that D(T) ⊂ D(S)

and S(0) ⊂ T(0). Assume that T is closed, S is T-bounded
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with T-bound b, and S∗ is T∗-bounded with T∗-bound b′. Let
r � max b, b′􏼈 􏼉, if r〉0, set

Ω � |z|〈
1
r
: T + zS, T

∗
+ z
∗
S
∗ is closed􏼚 􏼛. (39)

If r � 0, set

Ω � |z| ∈ C: T + zS, T
∗

+ z
∗
S
∗ is closed􏼈 􏼉. (40)

Further, denote by Ω0 the connected component of Ω
that contains zero. +en,

(T + zS)
∗

� T
∗

+ z
∗
S
∗
, (41)

for all z ∈ Ω0.

Proof. Let Qz and Qz
′ be the orthogonal projections (in

X × Y) onto T + zS and U− 1(T∗ + z∗S∗), respectively, where
U is the flip-flop operator defined as (10). It follows from
+eorem 2 that the operators Qz and Qz

′ depend continu-
ously on z ∈ Ω. By (11), we get that T⊥ � U− 1T∗. Hence,
X × Y � T⊕U− 1T∗ and consequently,

Q0 + Q0′ � I. (42)

By Proposition III.1.5 in [9], we have that
T∗ + z∗S∗ ⊂ (T + zS)∗, which together with (11) implies that

U
− 1

T
∗

+ z
∗
S
∗

( 􏼁 ⊂ U
− 1

(T + zS)
∗

� T + zS, z ∈ Ω. (43)

+us, QzQz
′ � Qz
′Qz � 0 for z ∈ Ω by Lemma 6. Again

by Lemma 6, one has that I − Qz − Qz
′ is an orthogonal

projection for any z ∈ Ω. Consequently, the value of
‖I − Qz − Qz

′‖ can be only 0 or 1. Since ‖I − Qz − Qz
′‖

depends continuously on z ∈ Ω, which together with (42)
yields that

I − Qz − Qz
′

����
���� � I − Q0 − Q0′

����
����

� 0, z ∈ Ω0.
(44)

Hence, X × Y � (T + zS)⊕U− 1(T∗ + z∗S∗). +erefore,
T∗ + z∗S∗ � U(T + zS) � (T + zS)∗ for all z ∈ Ω0 by (11).
+is completes the proof.

If the relative bounds of S with respect to T and of S∗ with
respect to T∗ are less than one, then z ∈ C: |z|≤ 1{ } ⊂ Ω0 by
Lemma 5. +erefore, by +eorem 3, we have the following
result. □

Corollary 1. Let T, S ∈ LR(X, Y) satisfy that D(T) ⊂ D(S)

and S(0) ⊂ T(0). Assume that T is closed, S is T-bounded
with T-bound less than 1, and S∗ is T∗-bounded with
T∗-bound less than 1. -en, (T + S)∗ � T∗ + S∗.

Remark 2. Let T ∈ LR(X) be self-adjoint and S ∈ LR(X) be
Hermitian with D(T) ⊂ D(S). +en, S(0) ⊂ T(0) by
Lemma 5.8 in [25]. If S is T-bounded with T-bound less
than one, then S∗ is T∗-bounded with T∗-bound less than
one by Corollary III.1.13 in [17], and thus (T + S)∗ � T∗ +

S∗ � T + S by Corollary 1, which means T + S is self-ad-
joint. So, we shall remark that Corollary 1 generalizes

+eorem 5.2 in [25] for self-adjoint relations to general
linear relations.

Remark 3. For studying stabilities of spectra of self-adjoint
linear relations, we need to study stabilities of self-
adjointness of linear relations. +e results obtained in the
present paper can be available in this case. Further, we shall
apply these results to study stabilities of essential spectra of
self-adjoint linear relations under some perturbations in our
forthcoming paper.
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