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In this study, we establish some relationships between perturbations of a linear relation and its operator part by constructing an
operator, which is induced by two linear relations including their closedness, hermiticity, self-adjointness, various spectra, defect
indices, and perturbation terms.

1. Introduction

Motivated by the study for the adjoint of nondensely defned
linear diferential operators, the concept of linear relations, a
natural generalization of linear operators, was introduced in
[1]. Along with the development of operator theory, the
spectral theory for linear relations has been extensively
studied and has important applications to several problems
(cf., [2–14]). It is worth mentioning that the spectra of linear
relations may provide some useful tools for the study of
certain operators, such as the maximal and minimal oper-
ators corresponding to linear continuous Hamiltonian
systems or symmetric linear diference equations [12, 15],
and the inverse of certain operators in the study of some
Cauchy problems associated with parabolic type equations
in Banach spaces [16].

To the best of our knowledge, there are still many im-
portant fundamental problems of linear relations that have
neither been studied nor completed. In 1961, Arens showed
that every closed linear relation T in a Hilbert space can be
decomposed as an operator part Ts and a purely multivalued
part T∞ [17]; this decomposition provides a bridge between
linear relations and operators. In 1985, Dijksma and de Snoo
proved that the operator part Ts of a self-adjoint relation T is
also a self-adjoint in the Hilbert space T(0)⊥ [18]. Later, Shi

et al. established some relationships between the spectra and
various spectra of a closed relation and its operator part as
well [19]. Enlightened by these works, the main idea of this
study was to construct a linear operatorAT, which is induced
by two linear relations T and A such that some perturbations
of T can be consistent with its operator part Ts and the
various spectra of T + A and Ts + AT are identical. Con-
sequently, one can study some perturbation problems about
linear relations by using these results and related existing
results about operators.

Te rest of this study is organized as follows. In Section 2,
some preliminary and auxiliary results that will be used in
the sequel are introduced. In addition, a new linear operator
AT is introduced, which is induced by two linear relations T

and A, and its properties are studied. In Section 3, the
decomposition of a linear relation is given in terms of re-
ducing subspaces, and relationships between a relation and
its decomposition parts are established, including their
closedness, hermiticity, self-adjointness, defect indices, and
spectra. Using these relationships, the corresponding rela-
tionships between relation T + A and operator Ts + AT are
given in case if T is closed. Further, a concept of trace class
linear relations is introduced and relationships between
various perturbations of a closed relation T and its operator
part Ts are discussed. It is shown that if relation A is a
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relatively bounded or compact perturbation term of T, or A

belongs to degenerate or trace class linear relations, then AT

is the same perturbation term of Ts, respectively (see-
Teorems 9–12).

2. Preliminaries

In this section, we shall recall some basic concepts, give some
fundamental results on linear relations, and introduce a new
linear operator induced by two relations and study its
properties, which will be used in the sequent sections. Tis
section is divided into three subsections.

2.1. Some Basic Concepts and Fundamental Results of Linear
Relations. Let X, Y, Z, · · · denote normed spaces over a
number feld K. Te norm of X × Y is defned by

‖(x, y)‖ � ‖x‖
2
X +‖y‖

2
Y􏼐 􏼑

1/2
, x ∈ X, y ∈ Y, (1)

where ‖ · ‖X and ‖ · ‖Y are the norms of the spaces X and Y,
respectively, still denoted by ‖ · ‖ without any confusion.
Similarly, if X and Y are inner product spaces, then the inner
product of X × Y is defned by

〈 x1, y1( 􏼁, x2, y2( 􏼁〉 �〈x1, x2〉 +〈y1, y2〉, x1, y1( 􏼁, x2, y2( 􏼁 ∈ X × Y. (2)

Obviously, if X and Y are complete, then X × Y is also
complete.

C and R denote the sets of complex and real numbers,
respectively.

Any linear subspace T ⊂ X × Y is called a linear relation
(briefy, relation or subspace) of X × Y. LR(X, Y) denotes the
set of all the linear relations of X × Y. In the case where
X � Y, LR(X) denotes LR(X, Y), briefy.

Te domain D(T), range R(T), and null spaceN(T) of T

are, respectively, defned by

D(T) � x ∈ X: (x, y) ∈ T for somey ∈ Y􏼈 􏼉,

R(T) � y ∈ Y: (x, y) ∈ T for somex ∈ X􏼈 􏼉,

N(T) � x ∈ X: (x, 0) ∈ T{ }.

(3)

Furthermore, it denotes the following:

T(x) � y ∈ Y: (x, y) ∈ T􏼈 􏼉

T
−1

� (y, x): (x, y) ∈ T􏼈 􏼉.
(4)

T is said to be injective if N(T) � 0, and surjective if
R(T) � Y.

It is evident that T(0) � 0{ } if and only if T can uniquely
determine a linear operator from D(T) into X whose graph
is T. For convenience, a linear operator (i.e., single-valued
operator) from X to Y will always be identifed with a re-
lation in X × Y via its graph. In addition, N(T) � 0{ } if and
only if T− 1(0) � 0{ }, i.e., T is injective if and only if T− 1 is a
linear operator. Further, T is said to be closed ifT � T, where
T is the closure of T.

Let T, A ∈ LR(X, Y) and α ∈ K. We defne

αT � (x, αy)(x, y) ∈ T􏼈 􏼉,

T + A � (x, y + z)(x, y) ∈ T, (x, z) ∈ A􏼈 􏼉,

T − α (x, y − αx)(x, y) ∈ T􏼈 􏼉in  the case thatY � X.

(5)

If T∩A � (0, 0){ }, we denote

T _+A � x1 + x2, y1 + y2( 􏼁 x1, y1( 􏼁 ∈ T, x2, y2( 􏼁 ∈ A􏼈 􏼉. (6)

Further, in the case that X and Y are inner product
spaces, if T and A are orthogonal, that is, 〈(x, y), (u, v)〉 � 0
for all (x, y) ∈ T and (u, v) ∈ A, then it denotes the
following:

T⊕A � T _+A. (7)

Te product of linear relations T ∈ LR(X, Y) and
A ∈ LR(Y, Z) is defned by (see [17])

AT � (x, z) ∈ X × Z(x, y) ∈ T, (y, z) ∈ A for somey ∈ Y􏼈 􏼉.

(8)

Note that if A and T are operators, then AT is also an
operator.

In the following, we shall briefy recall the concepts of
bounded and compact relations, which were introduced in
[20, 21].

Let X and Y be normed spaces and T ∈ LR(X, Y). By QT,
or simply Q when there is no ambiguity about the relation T,
we denote the natural quotient map from Y onto Y/T(0).
Clearly, QT is an operator [20]. Furthermore, it denotes that
BX: � x ∈ X: ‖x‖≤ 1{ }.

For any given x ∈ D(T), the norms of T(x) and T are
defned by

‖T(x)‖ � ‖(QT)(x)‖,

‖T‖ � ‖QT‖ � sup ‖(QT)(x)‖x ∈ D(T)∩BX􏼈 􏼉,
(9)

respectively. If ‖T‖<∞, then T is said to be bounded.
T is said to be compact if QT is compact.
It is evident that T is compact if and only if for every

bounded sequence xn􏼈 􏼉
∞
n�1 ⊂ D(T) and (QT)(xn)􏼈 􏼉

∞
n�1 has a

convergent subsequence in Y/T(0). Moreover, if T is
compact, then T is bounded [20] (Corollary V.2.3).

Te following results come from [20], Proposition II.1.4,
and [22], Corollary 1.

Lemma 1. Let X and Y be normed spaces and T ∈ LR(X, Y).
Ten,
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(i) ‖T(x)‖ � d(y, T(0)) � d(0, T(x)) for every
x ∈ D(T) and y ∈ T(x);

(ii) ‖T‖ � sup ‖T(x)‖: x ∈ D(T)∩BX􏼈 􏼉;
(iii) For any given xn􏼈 􏼉

∞
n�1 ⊂ D(T), (QTT)(xn)⟶ [y]

as n⟶∞ for some [y] ∈ Y/T(0) if and only if for
each n≥ 1, there exists yn ∈ T(xn) such that
yn⟶ y as n⟶∞.

Defnition 1 (see [19, 23, 24]). Let X be a Banach space over
the complex feld C and T ∈ LR(X).

(1) Te set ρ(T): � λ ∈ C: (T − λ)− 1
􏽮

is a bounde d linear operator de fined onX} is called
the resolvent set of T.

(2) Te set σ(T): � C/ρ(T) is called the spectrum of T.
(3) For λ ∈ C, if there exists (x, λx) ∈ T for some x≠ 0,

then λ is called an eigenvalue of T, while x is called an
eigenvector of T with respect to the eigenvalue λ.
N(T − λ) is called the eigensubspace of λ, and dim
N(T − λ) is called the multiplicity of λ. Further, the
set of all the eigenvalues of T is called the point
spectrum of T, denoted by σp(T).

(4) Te essential spectrumσe(T) of T is the set of those
points of σ(T) that are either accumulation points of
σ(T) or isolated eigenvalues of infnite multiplicity.

(5) Te set σd(T): � σ(T)/σe(T) is called the discrete
spectrum of T.

2.2. Concepts and Fundamental Properties of Self-Adjoint
Linear Relations. In this subsection, we shall briefy recall
the concept of self-adjoint relations and another classif-
cation of the spectrum of a self-adjoint relation by its spectral
family and some fundamental properties of them.

In this part, X is always assumed to be a complex Hilbert
space.

Let X ∈ LR(X). Te adjoint of T is defned by

T
∗

� (f, g) ∈ X
2
〈g, x〉 � 〈f, y〉for all(x, y) ∈ T􏽮 􏽯. (10)

T is said to be Hermitian in X2 if T ⊂ T∗ and said to be
self-adjoint in X2 if T � T∗.

Arens introduced the following decomposition for a
closed linear relation T in X2 [17]:

T � Ts⊕T∞, (11)

where

T∞ � (0, y) ∈ X
2
: (0, y) ∈ T􏽮 􏽯, Ts � T⊖T∞. (12)

It can be easily verifed that Ts is an operator, and T is an
operator if and only if T � Ts. Ts and T∞ are called the
operator and pure multivalued parts of T, respectively. In
addition, they satisfy the following properties:

D Ts( 􏼁 � D(T), D Ts( 􏼁 � D(T) � T
∗
(0)
⊥

,

R Ts( 􏼁 ⊂ T(0)
⊥

, T∞ � 0{ } × T(0).

(13)

If T is an Hermitian, it is evident that

D(T) ⊂ T
∗
(0)
⊥ ⊂ T(0)

⊥
. (14)

Troughout the present study, the resolvent set and
spectrum of Ts mean those of Ts are restricted to (T(0)⊥)2.

Lemma 2 (see [Proposition 2.1, Theorems 2.1, 2.2 and 3.4 in
[19]). Let T be a closed Hermitian relation in X2. Ten,

Ts � T∩ T(0)
⊥

( 􏼁
2
,

T∞ � T∩T(0)
2
.

(15)

Ts is a closed Hermitian operator in T(0)⊥, and

ρ(T) � ρ Ts( 􏼁, σ(T) � σ Ts( 􏼁, σ T∞( 􏼁 � ∅,

σp(T) � σp Ts( 􏼁, N(T − λ) � N Ts − λ( 􏼁, λ ∈ σp(T).
(16)

Further, if T is a self-adjoint relation in X2, then

σe(T) � σe Ts( 􏼁, σd(T) � σd Ts( 􏼁. (17)

Remark 1. It follows from Teorems 2.1 and 2.2 in [19] that
(17) also holds ifTis a closed Hermitian relation inX2.

Lemma 3 (see p. 26 in [18]). If T is a self-adjoint relation in
X2, then Ts and T∞ are self-adjoint relations in (T(0)⊥2 and
T(0)2, respectively.

Lemma 4 (see Theorem 2.5 in [19]). Let T be an Hermitian
relation in X2. Ten, T is self-adjoint in X2 if and only if
R(T − λ) � R(T − λ) � X for some λ ∈ C.

Next, we shall briefy recall another classifcation of the
spectrum of a self-adjoint relation by its spectral family,
including continuous spectrum, singular continuous spec-
trum, absolutely continuous spectrum, and singular spec-
trum and their some properties (see [19]). Te concept of
spectral family of a self-adjoint relation was introduced by
Coddington and Dijksma in [8].

Let T be a self-adjoint relation in X2. By Lemma 3, Ts is a
self-adjoint operator in T(0)⊥. Ten, Ts has the following
spectral resolution:

Ts � 􏽚 tdEs(t), (18)
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where Es(t)􏼈 􏼉t∈R is the spectral family of Ts in T(0)⊥. Te
spectral family of the relation T is defned by

E(t) � Es(t)⊕O, t ∈ R, (19)

where O is the zero operator defned on T(0). We denote

E(N)f � 􏽚
N

dE(t)f,N ⊂ R, f ∈ X. (20)

Let XP denote the closed linear hull of all the eigen-
vectors of T and XC: � X⊥P . Tey are called the discontin-
uous and continuous subspaces in X with respect to T,
respectively. Further, we denote

XSC � f ∈ XCthere exists a Borel null setN such thatE(N)f � f􏼈 􏼉, (21)

XAC: � XC⊖XSC, and XS: � XP⊕XSC, which are called the
singular continuous, absolutely continuous, and singular
subspaces in X with respect to T.

Te (spectral) discontinuous, continuous, singular
continuous, absolutely continuous, and singular parts of T

are defned by

TP � T∩X
2
P,

TC � T∩X
2
C,

TSC � T∩X
2
SC,

TAC � T∩X
2
AC,

TS � T∩X
2
S,

(22)

respectively.

Defnition 2 (see Defnition 4.1 in [19]). Let T be a self-
adjoint relation in X2. Te spectra of TC, TSC, TAC, and TS

are called the continuous spectrum, singular continuous
spectrum, absolutely continuous spectrum, and singular
spectrum of T, respectively, denoted by σc(T), σsc(T), σac(T)

, and σs(T), respectively.

Lemma 5 (see Theorem 4.1 in [19]). Let T be a self-adjoint
relation in X2. Ten,

σ TP( 􏼁 � σ Ts( 􏼁P( 􏼁,

σr(T) � σr Ts( 􏼁,

r � c, ac, sc, s.

(23)

2.3. An Operator Induced by Two Linear Relations. In this
subsection, we shall frst introduce a new linear operator
induced by two linear relations, which plays an important
role in the present study, and then study its some properties.
Further, X is assumed to be a complex Hilbert space.

Let T and A be two linear relations in X2 with
D(T) ⊂ D(A) and A(0) ⊂ T(0). PT denotes the following
orthogonal projection:

PT: X⟶ T(0)
⊥

. (24)

It defnes that

AT � PTA|
D(T)∩D(A)

. (25)

It follows from A(0) ⊂ T(0) that
AT(0) � PTA(0) ⊂ PTT(0) � 0. Tis means AT is single-
valued. Further, it is evident that D(T) ⊂ D(AT) ⊂ D(T)

and R(AT) ⊂ T(0)⊥. Consequently, D(AT) � D(T). Note
that AT � A|

D(T)∩D(A)
in the case that T is single-valued.

Proposition 1. Let T, A ∈ LR(X) with D(T) ⊂ D(A) and
A(0) ⊂ T(0). If T is closed and D(T) ⊂ T(0)⊥, then

AT|D(T) � (T + A − T)∩ T(0)
⊥

( 􏼁
2
. (26)

Proof. We suppose that T is closed and D(T) ⊂ T(0)⊥.
Ten, T(0) is closed by Proposition II.5.3 in [20]. Conse-
quently, X can be decomposed as

X � T(0)
⊥⊕T(0). (27)

Since A(0) ⊂ T(0), we have that

(T + A − T)(x) � A(x) + T(0) � y􏼈 􏼉 + T(0), y ∈ A(x), x ∈ D(T). (28)

Hence, (T + A − T)∩ (T(0)⊥)2 is single-valued.
We frst show that(T + A − T)∩ (T(0)⊥)2 ⊂ AT|D(T).

For any(x, y) ∈ (T + A − T)∩ (T(0)⊥)2, there exist
(x, y1) ∈ A and (0, y2) ∈ T such that y � y1 + y2 by (28).
Let y1 � y11 + y12, where y11 ∈ T(0)⊥ and y12 ∈ T(0).

Ten, y � y11 + y12 + y2. Note that y, y11 ∈ T(0)⊥ and
y12, y2 ∈ T(0). We have y � y11. Hence, AT(x) � PT(y1) �

y11 � y. Terefore, (T + A − T)∩ (T(0)⊥)2 ⊂ AT|D(T).
Now, we consider the inverse. For any given

(x, y) ∈ AT|D(T), there exists z, f ∈ X such that (x, z) ∈ A,
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(z, y) ∈ PT, and (x, f) ∈ T since x ∈ D(T). It follows from
(11) that (x, f) can be decomposed as (x, f) � (x, f1) +

(0, f2) with (x, f1) ∈ Ts and (0, f2) ∈ T∞. Let z � z1 + z2,
where z1 ∈ T(0)⊥ and z2 ∈ T(0). Ten, y � z1. Since
A(0) ⊂ T(0), we have T(0) � (T + A)(0). Hence,
(0, z2) ∈ T + A. Note that when (x, f + z) ∈ T + A, we get
(x, f + y) ∈ T + A. Tis together with (x, f) ∈ T implies
that (x, y) ∈ T + A − T. Since x ∈ D(T) ⊂ T(0)⊥ and
y ∈ T(0)⊥, we have(x, y) ∈ (T(0)⊥)2. Consequently,
AT|D(T) ⊂ (T + A − T)∩ (T(0)⊥)2.

Terefore, (26) holds. Tis completes the proof.
Te following result is a direct consequence of (14) and

Proposition 1. □

Corollary 1. Let T, A ∈ LR(X) with D(T) ⊂ D(A) and
A(0) ⊂ T(0). If T is closed and Hermitian, then

AT|D(T) � (T + A − T)∩ T(0)
⊥

( 􏼁
2
. (29)

Now, we give a decomposition of T + A in the case that T

is closed. Tis decomposition plays an important role in the
study of some properties about linear relations in the present
study.

Theorem 1. Let T, A ∈ LR(X) with D(T) ⊂ D(A) and
A(0) ⊂ T(0). If T is closed, then

T + A � Ts + AT( 􏼁⊕T∞. (30)

Proof. We suppose that T is closed. It is evident that Ts + AT

and T∞ are orthogonal.
For any (x, y) ∈ T + A, there exists y1, y2 ∈ X such that

(x, y1) ∈ T, (x, y2) ∈ A, and y � y1 + y2. It follows from
(11) that (x, y1) � (x, y11) + (0, y12) with (x, y11) ∈ Ts and
(0, y12) ∈ T∞. Let y2 � y21 + y22, where y21 ∈ T(0)⊥ and
y22 ∈ T(0). Ten, (x, y21) ∈ AT and (0, y12 + y22) ∈ T∞.
Hence, (x, y) � (x, y11 + y21) + (0, y12 + y22) belongs to
(Ts + AT)⊕T∞. Tis implies that T + A ⊂ (Ts + AT)⊕T∞.

On the other hand, for any given (x, y) ∈ (Ts + AT)⊕T∞,
it can be decomposed as (x, y) � (x, y1) + (0, y2) with
(x, y1) ∈ Ts + AT and (0, y2) ∈ T∞ ⊂ T. Let y1 � y11 + y12,
where (x, y11) ∈ Ts ⊂ T and (x, y12) ∈ AT. Given any
z ∈ A(x), it can be decomposed as z � z1 + z2 with
z1 ∈ T(0)⊥ and z2 ∈ T(0), andwe have thaty12 � z1 � z − z2
and (x, y11 + y2 − z2) ∈ T. Consequently,

(x, y) � x, y1 + y2( 􏼁 � x, y11 + y2 − z2 + z( 􏼁 ∈ T + A,

(31)

which yields that (Ts + AT)⊕T∞ ⊂ T + A.
Terefore, (30) holds and the proof is complete. □

Corollary 2. Let T, A ∈ LR(X) with D(T) ⊂ D(A) and
A(0) ⊂ T(0). If T and T + A are closed, then

(T + A)s � Ts + AT. (32)

Proof. Suppose that T and T + A are closed. It follows from
A(0) ⊂ T(0) that T∞ � (T + A)∞. Ten,
T + A � (T + A)s⊕T∞ by (11), which together with (30)
implies (T + A)s � Ts + AT. Te proof is complete. □

Remark 2. In Teorem 3.1 in [25], Shi showed
that (T + A)s � PTs + QAs under some conditions, whereP:

T(0)⊥ ⟶ (T + A) (0)⊥ andQ: A(0)⊥ ⟶ (T + A)(0)⊥

are orthogonal projections. Note that(T + A)(0) � T(0) by
the assumption thatA(0) ⊂ T(0). Ten,P is an identity
mapping from T(0)⊥ onto itself and QAs|D(T)∩D(A)

� AT.
Hence, Teorem 3.1 in [25] is consistent with the result in
Corollary 2 in the case that A is closed. Further,Teorem 3.2
in [25] can be directly derived from Corollary 2.

3. Relationships between Perturbations of T
and Ts

In this section, we shall investigate the relationships between
properties of T + A and Ts + AT and the perturbation terms
of T and Ts. Note that the relation T + A can be decomposed
as (30), we shall consider a general decomposition, which is
induced by reducing subspaces and discuss the relationships
between a relation and its decomposition parts in Subsection
3.1. Using these results, the corresponding relationships
between relation T + A and operator Ts + AT are given in
Subsection 3.2. Further, relationships between various
perturbations of closed relation T and its operator part Ts

are studied in Subsection 3.3.

3.1. Decomposition of Relations. Te following concept of
reducing subspace for a linear relation in Banach spaces can
be extended to the corresponding one in Hilbert spaces (cf.,
[18]).

Let X be a Banach space. Suppose that X has the
decomposition

X � X1∔X2, (33)

where X1 and X2 are closed subspaces of X and X1 ∩X2 �

0{ }. Let P: X⟶ X1 be the projection on X1 along with X2
and T ∈ LR(X). We denote

P
(2)

T � (Px, Py)(x, y) ∈ T􏼈 􏼉. (34)

It is clear that T∩X2
1 ⊂ P(2)T.

If P(2)T ⊂ T, then X1 is called a reducing subspace of T.
We also say that X1 reduces T or T is reduced by X1. In this
case, one has that

T∩X
2
1 � P

(2)
T. (35)

It can be easily verifed thatX1 reducesT if and only ifX2
reduces T. Further, if X1 reduces T, then

T � T1∔T2, (36)

where

Discrete Dynamics in Nature and Society 5



Ti � T∩X
2
i ,

i � 1, 2.
(37)

Further, we suppose thatX is a Hilbert space andX1⊥X2. If
T is reduced by X1, then

T � T1⊕T2, (38)

where T1 and T2 are defned by (37).
Now, we give a relationship between the closedness of T

and its decomposition parts.

Proposition 2. Let X be a Banach space, T ∈ LR(X) be
reduced by X1 ⊂ X, and Ti(i � 1, 2) be defned by (37). Ten,
T is a closed relation in X2 if and only if Ti is a closed relation
in X2

i for each i � 1, 2.

Proof. It is evident that Ti is closed in X2
i for i � 1, 2 if T is

closed.
We suppose that Ti is closed in X2

i for i � 1, 2. Given any
sequence (xn, yn)􏼈 􏼉

∞
n�1 ⊂ T with (xn, yn)⟶ (x, y) as

n⟶∞, there exist (xn,i, yn,i) ∈ Ti, i � 1, 2 such that
(xn, yn) � (xn,1, yn,1) + (xn,2, yn,2) by (36). Note that Xi is
closed for i � 1, 2. Ten, P: X⟶ X1 is bounded by closed
graph theorem. So, there exist xi, yi ∈ X such that
(xn,i, yn,i)⟶ (xi, yi) as n⟶∞ for i � 1, 2. Conse-
quently, (x, y) � (x1, y1) + (x2, y2) with (xi, yi) ∈ Ti since
Ti is closed in X2

i for i � 1, 2. Hence, (x, y) ∈ T again by
(36). Terefore, T is a closed relation in X2. Tis completes
the proof.

In the following, we shall discuss the relationships be-
tween the hermiticity and self-adjointness of T and its de-
composition parts, respectively. □

Proposition 3. Let X be a Hilbert space, T ∈ LR(X) be
reduced by X1 ⊂ X, and Ti(i � 1, 2) be defned by (37) with
X1⊥X2. Ten, T is an Hermitian relation in X2 if and only if
Ti is an Hermitian relation in X2

i for each i � 1, 2.

Proof. Obviously, Ti is an Hermitian relation in X2
i for each

i � 1, 2 if T is Hermitian.
We suppose that Ti is an Hermitian relation in X2

i for
i � 1, 2. Given any (x, y), (f, g) ∈ T, there exist
(x1, y1), (f1, g1) ∈ T1 and (x2, y2), (f2, g2) ∈ T2 such that
(x, y) � (x1, y1) + (x2, y2) and (f, g) � (f1, g1) + (f2, g2)

by (38). Since Ti is Hermitian in X2
i for i � 1, 2, we have that

〈f, y〉 �〈f1 + f2, y1 + y2〉 �〈f1, y1〉 +〈f2, y2〉

�〈g1, x1〉 +〈g2, x2〉 �〈g1 + g2, x1 + x2〉 � 〈g, x〉

(39)

Terefore, T is an Hermitian. Te proof is complete. □

Lemma  (see p. 26 in [18]). Let X be a Hilbert space and
T ∈ LR(X).

(i) Let X1 and X2 be closed subspaces in X and
Ti ⊂ X2

i , i � 1, 2. If T � T1⊕T2 and X � X1⊕X2, then
Xi is a reducing subspace of T, i � 1, 2.

(ii) If T is a self-adjoint relation in X2 and X1 reduces T

with X1⊥X2, then Ti defned by (37) is a self-adjoint
relation in X2

i for i � 1, 2.

Proposition 4. Let X be a Hilbert space, T ∈ LR(X) be
reduced by X1 ⊂ X, and Ti(i � 1, 2) be defned by (37) with
X1⊥X2. Ten, T is a self-adjoint relation in X2 if and only if
Ti is a self-adjoint relation in X2

i for each i � 1, 2.

Proof. Te necessity directly follows from (ii) of Lemma 6.
Now, we consider the sufciency. Since Tj is a self-adjoint
relation in X2

j , we have R(Tj ± i) � Xj for j � 1, 2 by
Lemma 4. So, it follows from (37) and (38) that

R(T ± i) � R T1 ± i( 􏼁⊕R T2 ± i( 􏼁 � X1⊕X2 � X, (40)

which implies that T is a self-adjoint relation in X2 by
Lemma 4 and Proposition 3. Tis completes the proof.

Now, we discuss the relationships between the defect
indices of T and its decomposition parts. □

Defnition 3 (see Defnition 2.3 in [26]). Let X be a Hilbert
space and T ∈ LR(X). Te subspace R(T − λ)⊥ is called the
defect space of T and λ, and the number
β(T, λ): � dimR(T − λ)⊥ is called the defect index of T and
λ.

Let X be a Hilbert space. It follows from Teorem 2.3 in
[26] that β(T, λ) is constant in the upper and lower half-
planes if T is an Hermitian relation in X2. In this case, it
denotes that

d+(T) � β(T, −i), d−(T) � β(T, i), (41)

which are called the positive and negative defect indexes of
T, respectively. Te pair (d+(T), d−(T)) is called the defect
indices of T (see [26]).

Proposition 5. Let X be a Hilbert space, T ∈ LR(X) be
reduced by X1 ⊂ X, and Ti(i � 1, 2) be defned by (37) with
X1⊥X2. Ten,

β(T, λ) � β T1, λ( 􏼁 + β T2, λ( 􏼁, λ ∈ C, (42)

where Ti is regarded as a relation in X2
i for i � 1, 2.

Proof. Given any λ ∈ C, it sufces to show that

R(T − λ)
⊥

� R T1 − λ( 􏼁
⊥⊕R T2 − λ( 􏼁

⊥
, (43)

□

where R(Ti − λ)⊥ is the orthogonal complement of
R(Ti − λ) in Xi for i � 1, 2.

Given any y ∈ R(T − λ)⊥, there exist y1 ∈ X1 and
y2 ∈ X2 such that y � y1 + y2. So, for every f ∈ R(T1 −

λ) ⊂ R(T − λ)∩X1 and g ∈ R(T1 − λ) ⊂ R(T − λ)∩X2, we
have 〈y1, f〉 � 〈y, f〉 � 0 and 〈y2, g〉 � 〈y, g〉 � 0. Hence,
yi ∈ R(Ti − λ)⊥ for i � 1, 2. And consequently,
R(T − λ)⊥ ⊂ R(T1 − λ)⊥⊕R(T2 − λ)⊥.

On the other hand, for any y ∈ R(T1 − λ)⊥⊕R(T2 − λ)⊥,
it can be decomposed as y � y1 + y2 with
yi ∈ R(Ti − λ)⊥ ⊂ Xi, i � 1, 2. For any f ∈ R(T − λ), there
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exists fi ∈ R(Ti − λ) ⊂ Xi, i � 1, 2 such that f � f1 + f2 by
(37) and (38). Hence,

〈y, f〉 �〈y1 + y2, f1 + f2〉 �〈y1, f1〉 +〈y2, f2〉 � 0,

(44)

which implies that y ∈ R(T − λ)⊥. Ten,
R(T1 − λ)⊥⊕R(T2 − λ)⊥ ⊂ R(T − λ)⊥. Terefore, (43) holds,
which yields that (42) holds and this completes the proof.

Te following result can be directly derived from
Propositions 3 and 5.

Corollary 3. Let X be a Hilbert space and T ∈ LR(X) be
Hermitian and reduced by X1 ⊂ X. Furthermore, let Ti(i �

1, 2) be defned by (37) with X1⊥X2. Ten,

d+(T) � d+ T1( 􏼁 + d+ T2( 􏼁, d−(T) � d− T1( 􏼁 + d− T2( 􏼁,

(45)

where Ti is regarded as a relation in X2
i for i � 1, 2.

In the following, we shall investigate the relationships
among the spectra and various spectra of T and its de-
composition parts, including point spectra, essential spectra,
discrete spectra, continuous spectra, singular continuous
spectra, absolutely continuous spectra, and singular spectra.

Te following result is a generalization of self-adjoint
case in Hilbert spaces Proposition 3.2 in [19].

Theorem 2. Let X be a Banach space, T ∈ LR(X) be reduced
by X1 ⊂ X, and Ti(i � 1, 2) be defned by (37). Ten,

σ(T) � σ T1( 􏼁∪ σ T2( 􏼁, ρ(T) � ρ T1( 􏼁∩ ρ T2( 􏼁, (46)

where σ(Ti) and ρ(Ti) are the spectrum and resolvent set of
Ti in X2

i for i � 1, 2, respectively.

Proof. It sufces to show that the second relation in (46)
holds, which implies that σ(T) � σ(T1)∪ σ(T2).

We frst show that ρ(T) ⊂ ρ(T1)∩ ρ(T2). For any given
λ ∈ ρ(T), R(T − λ) � Xand there exists a constant c> 0 such
that for all (x, y) ∈ T,

‖x‖≤ c‖y − λx‖. (47)

Obviously, (47) holds for all (x, y) ∈ T1 since T1 ⊂ T.
Now, we show that T1 − λ is surjective in X1. For any given

z ∈ X1, there exists (x, y) ∈ T such that z � y − λx since
R(T − λ) � X. It follows from (36) that (x, y) can be
decomposed as (x, y) � (x1, y1) + (x2, y2) with
(xi, yi) ∈ Ti and i � 1, 2. Ten, z � y1 − λx1 + x2 − λy2.
Because z, x1, y1 ∈ X1 and x2, y2 ∈ X2, we have z � y1 − λx1
and y2 − λx2 � 0, and thus, z ∈ R(T1 − λ). Consequently,
T1 − λ is surjective in X1. Hence, λ ∈ ρ(T1). With a similar
argument, one can show λ ∈ ρ(T2).Ten, λ ∈ ρ(T1)∩ ρ(T2).
Terefore, ρ(T) ⊂ ρ(T1)∩ ρ(T2).

Next, we consider the inverse inclusion. For any given
λ ∈ ρ(T1)∩ ρ(T2), we have R(Ti − λ) � Xi for i � 1, 2, and
there is a constant b> 0 such that

xi

����
����≤ b yi − λxi

����
����,∀ xi, yi( 􏼁 ∈ Ti, i � 1, 2. (48)

For any z ∈ X, there exist z1 ∈ X1 and z2 ∈ X2 such that
z � z1 + z2. Ten, there is (xi, yi) ∈ Ti such that zi � yi −

λxi for i � 1, 2, which implies that z � y1 + y2 − λ(x1 + x2).
Further, by (36), we can get that (x1 + x2, y1 + y2) ∈ T.
Hence, z ∈ R(T − λ), and consequently, R(T − λ) � X. Note
that P: X⟶ X1 is bounded by the closed graph theorem.
Tere exists a constant M> 0 such that

‖P(x)‖≤M‖x‖, ‖(1 − P)(x)‖≤M‖x‖∀x ∈ X. (49)

For any (x′, y′) ∈ T, it follows from (36) that (x′, y′)
can be uniquely decomposed as (x′, y′) � (x1′, y1′) + (x1′, y2′)
with (xi

′, yi
′) ∈ Ti and i � 1, 2. By utilizing (48) and (49), one

can get that

x′
����

����≤ x1′
����

���� + x2′
����

����≤ b y1′ − λx1′
����

���� + y2′ − λx2′
����

����􏼐 􏼑

� b P y′ − λx′( 􏼁
����

���� + (1 − P) y′ − λx′( 􏼁
����

����􏼐 􏼑≤ 2bM y′ − λx′
����

����,

(50)

which yields that (T − λ)− 1 is a bounded linear operator
defned on X, and consequently, λ ∈ ρ(T). It follows that
ρ(T1)∩ ρ(T2) ⊂ ρ(T + A). Terefore, the second relation in
(46) holds. Te proof is complete.

Now, we discuss the relationships between the point
spectra and essential spectra of T and its decomposition
parts. □

Theorem 3. Let X be a Banach space, T ∈ LR(X) be reduced
by X1 ⊂ X, and Ti(i � 1, 2) be defned by (37). Ten,

σp(T) � σp T1( 􏼁∪ σp T2( 􏼁, N(T − λ) � N T1 − λ( 􏼁∔N T2 − λ( 􏼁, λ ∈ C. (51)

Proof. It sufces to show that
N(T − λ) � N(T1 − λ)∔N(T2 − λ) for every λ ∈ C. It is
evident that N(T1 − λ)∔N(T2 − λ) ⊂ N(T − λ) since Ti ⊂ T

and i � 1, 2. For any f ∈ N(T − λ), we have (f, λf) ∈ T,
which can be decomposed as (f, λf) � (f1, g1) + (f2, g2)

by (36), where (fi, gi) ∈ Ti and i � 1, 2. Note that λf �

g1 + g2 � λf1 + λf2 and fi, gi ∈ Xi, i � 1, 2. One can get
that gi � λfi for i � 1, 2, which implies that fi ∈ N(Ti − λ)

and i � 1, 2.Tis yields that N(T − λ) ⊂ N(T1 − λ)∔N(T2 −

λ). Terefore, N(T − λ) � N(T1 − λ)∔N(T2 − λ). Tis
completes the proof.

Te following result can be easily verifed byTeorems 2
and 3. So, its detail proofs are omitted. □

Theorem 4. Let X be a Banach space, T ∈ LR(X) be reduced
by X1 ⊂ X, and Ti(i � 1, 2) be defned by (47). Ten,
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σe(T) � σe T1( 􏼁∪ σe T2( 􏼁, σd(T) � σd T1( 􏼁∪ σd T2( 􏼁. (52)

To the end of this subsection, we shall discuss the rela-
tionships between the continuous spectra, singular continuous
spectra, absolutely continuous spectra, and singular spectra of
T and its decomposition parts, separately.

Suppose that X is a Hilbert space and X1⊥X2. If
T ∈ LR(X) is self-adjoint and can be decomposed as (38),
then Ti is self-adjoint in X2

i for i � 1, 2 by Lemma 6. Let Ti �

Ti,s⊕Ti,∞, where Ti,∞ � (0, y) ∈ X2
i : (0, y) ∈ Ti􏼈 􏼉,

Ti,s � Ti⊖Ti,∞, and i � 1, 2. It is evident that

Ts � T1,s⊕T2,s, E(t) � E1(t)⊕E2(t), t ∈ R, (53)

where Ei(t)􏼈 􏼉t∈R is the spectral family of Ti in X2
i for i � 1, 2.

It follows from the second relation in (51) that

XP � X1,P⊕X2,P, (54)

and consequently,

XC � X1,C⊕X2,C, (55)

where Xi,P and Xi,C are the discontinuous and continuous
subspaces in Xi with respect to Ti for i � 1, 2.

By utilizing (53) and (55), we can get that

XSC � X1,SC⊕X2,SC, (56)

which together with (54) and (55) implies that

XAC � X1,AC⊕X2,AC, XS � X1,S⊕X2,S, (57)

where Xi,SC, Xi,AC, and Xi,S are the singular continuous,
absolutely continuous, and singular subspaces in Xi with
respect to Ti for i � 1, 2.

It is derived from (37), (38), and (54)–(57) that

TP � T1,P⊕T2,P,

TC � T1,C⊕T2,C,

TSC � T1,SC⊕T2,SC,

TAC � T1,AC⊕T2,AC,

TS � T1,S⊕T2,S,

Ti,P � TP ∩X
2
i,P,

Ti,C � TC ∩X
2
i,C,

Ti,SC � TSC ∩X
2
i,SC,

Ti,AC � TAC ∩X
2
i,AC,

Ti,S � TS ∩X
2
i,S, i � 1, 2.

(58)

where Ti,P, Ti,C, Ti,SC, Ti,AC, and Ti,S are the (spectral)
discontinuous, continuous, singular continuous, absolutely
continuous, and singular parts of Ti in X2

i for i � 1, 2,
respectively.

Theorem 5. Let X be a Hilbert space and T ∈ LR(X) be self-
adjoint and reduced by X1 ⊂ X. Further, let Ti(i � 1, 2) be
defned by (37) with X1⊥X2. Ten,

σ TP( 􏼁 � σ T1,P􏼐 􏼑∪ σ T2,P􏼐 􏼑,

σr(T) � σr T1( 􏼁∪ σr T2( 􏼁, r � c, ac, sc, s.
(59)

where Ti is regarded as a relation in X2
i for i � 1, 2.

Proof. Tis theorem can be directly derived from (i) of
Lemma 6, Teorem 2, and (54)–(58). □

3.2. Relationships between T + A and Ts + AT. In this sub-
section, we shall study the relationships between the
properties of T + A and Ts + AT, including their closedness,
hermiticity, self-adjointness, various spectra, and defect
indices. Further, X is always assumed to be a complex
Hilbert space in this part.

Lemma 7. Let T, A ∈ LR(X) satisfy that D(T) ⊂ D(A) and
A(0) ⊂ T(0). If T is closed and D(T) ⊂ T(0)⊥, then T + A is
reduced by T(0).

Proof. We suppose that T is closed and D(T) ⊂ T(0)⊥. It
follows from the assumption D(T) ⊂ D(A) and
A(0) ⊂ T(0) that

T∞ � T∩T(0)
2

� (T + A)∩T(0)
2
. (60)

Note that (15) holds if D(T) ⊂ T(0)⊥, which together
with Proposition 1 and Proposition 2.1 in [21] implies that

Ts + AT � Ts + AT|D(T)

� T + A − T + T∩ T(0)⊥( 􏼁
2

� (T + A)∩ T(0)⊥( 􏼁
2
.

(61)

Terefore, T + A is reduced by T(0) by Teorem 1 and
(i) of Lemma 6. Tis completes the proof.

Te following result comes from [6], and we shall give its
proof for completeness. □

Lemma 8. Let T ∈ LR(X) be closed. Ten, T∞ is a self-
adjoint relation in T(0).

Proof. We suppose that T is closed. Obviously, T∞ is closed in
T(0) for any (0, f), (0, g) ∈ T∞ and 〈0, f〉 � 〈g, 0〉 � 0.
Ten, T∞ is Hermitian in T(0). Note that R(T∞ ± i) � T(0).
Terefore,T∞ is a self-adjoint relation inT(0) by Lemma 4.Te
proof is complete.

By Propositions 2 - 4, Lemmas 7 and 8, (61) and (62), one
can easily get the following results. □

Theorem  . Let T, A ∈ LR(X) satisfy that D(T) ⊂ D(A)

and A(0) ⊂ T(0). If T is closed and D(T) ⊂ T(0)⊥, then

(i) T + A is closed if and only if Ts + AT is closed in
T(0)⊥;

(ii) T + A is an Hermitian relation in X2 if and only if
Ts + AT is an Hermitian operator in T(0)⊥.

(iii) T + A is a self-adjoint relation in X2 if and only if
Ts + AT is a self-adjoint operator in T(0)⊥.
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Now, we give a relationship between the spectra and
various spectra of T + A and Ts + AT.

Theorem 7. Let T, A ∈ LR(X) satisfy that D(T) ⊂ D(A)

and A(0) ⊂ T(0).

(i) If T is closed and D(T) ⊂ T(0)⊥, then

σe(T + A) � σe Ts + AT( 􏼁, σd(T + A) � σd Ts + AT( 􏼁.

(62)

(ii) If T is closed and T + A is self-adjoint, then

σ T + AP( 􏼁( 􏼁 � σ Ts + AT( 􏼁P( 􏼁,

σr(T + A) � σr Ts + AT( 􏼁, r � c, ac, sc, s,
(63)

where Ts + AT is regarded as a relation in (T(0)⊥)2.

Proof. Te frst assertion of Teorem 7 can be easily verifed
by (16), Teorems 1-4, and Lemma 7. Suppose that T + A is
self-adjoint. Ten, D(T) � D(T + A) ⊂ (T + A)(0)⊥

� T(0)⊥. And consequently, T(0) reduces T + A by Lemma
7. It follows from (16), and Teorems 1, 5, and 6 that (63)
holds. Tis completes the proof. □

Remark 3. By Corollary 2and Lemmas 3 and 5, (63) holds.
Te following results can be easily directly derived from

(14) and Teorem 7.

Corollary 4. Let T, A ∈ LR(X) satisfy that D(T) ⊂ D(A)

and A(0) ⊂ T(0). If T is closed and Hermitian, then

σe(T + A) � σe Ts + AT( 􏼁, σd(T + A) � σd Ts + AT( 􏼁, (64)

where Ts + AT is regarded as a relation in (T(0)⊥)2.
To the end of this subsection, we shall give a relationship

between the defect indices of T + A and Ts + AT.

Theorem 8. Let T, A ∈ LR(X) satisfy that D(T) ⊂ D(A)

and A(0) ⊂ T(0). If T is closed and T + A is Hermitian, then

d+(T + A) � d+ Ts + AT( 􏼁, d−(T + A) � d− Ts + AT( 􏼁,

(65)

where Ts + AT is regarded as a relation in (T(0)⊥)2.

Proof. We suppose that T is closed and T + A is Hermitian.
Ten, D(T) � D(T + A) ⊂ (T + A)(0)⊥ � T(0)⊥. And
consequently, T(0) reduces T + A by Lemma 7. It is derived
fromTeorem 1, Corollary 3, and (ii) ofTeorem 6 that (65)
holds. Tus, the proof is complete. □

3.3. Relationships between Perturbation Terms of T and Ts.
In this subsection, we shall discuss the relationships between
the perturbation terms of T and Ts if T is closed. Including
relatively bounded and relatively compact perturbation
terms, fnite rank perturbation term, and trace class per-
turbation term.

We shall frst recall the concepts of relatively bounded
and compact relations, which were introduced by Cross [20].

Let X and Y be normed spaces, T ∈ LR(X, Y), and XT

denote the space (D(T), ‖ · ‖T), where

‖x‖T � ‖x‖ +‖T(x)‖, x ∈ D(T). (66)

We then defne GT ∈ LR(XT, X) by GT(x) � x for
x ∈ XT. GT is called the graph operator of T.

Defnition 4 (see Defnition VII.2.1 in [20]). Let X, Y, and Z

be normed spaces, T ∈ LR(X, Y), and A ∈ LR(X, Z) with
D(T) ⊂ D(A).

(1) Te linear relation A is said to be T-bounded if there
exist nonnegative numbers a and b such that

‖A(x)‖≤ a‖x‖ + b‖T(x)‖, x ∈ D(T). (67)

If A is T-bounded, then the infmum of all numbers
b≥ 0 for which (67) holds with a constant a≥ 0, is
called the T-bound of A.

(2) Te linear relation A is said to be T-compact (or
relatively compact toT) if AGT is compact, i.e.,
A: XT⟶ Z is compact.

Lemma 9 (see Lemma 2.7 in [22]). Let X be a Hilbert space
and T ∈ LR(X) can be decomposed as (11). Ten, (11) holds
and

‖T(x)‖ � Ts(x)
����

����, x ∈ D(T), ‖T‖ � Ts

����
����. (68)

Lemma 10. Let X be a Hilbert space and T, A ∈ LR(X)

satisfy that D(T) ⊂ D(A) and A(0) ⊂ T(0). Ten,

AT(x)
����

����≤ ‖A(x)‖, x ∈D(T)∩D(A), AT

����
����≤ ‖A‖. (69)

Proof. It sufce to show that the frst relation in (69) holds.
Let x ∈D(T)∩D(A). It follows from (i) of Lemma 1 that for
any ϵ> 0, there exists y ∈ A(x) such that ‖y‖< ‖A(x)‖ + ϵ.
Let y � y1 + y2, where y1 ∈ T(0)⊥ and y2 ∈T(0). Ten,
AT(x) � y1 by (25). Consequently, ‖AT(x)‖ � ‖y1‖≤ ‖y‖

< ‖A(x)‖ + ϵ. Hence, ‖AT(x)‖≤ ‖A(x)‖ by the arbitrariness
of ϵ. Terefore, (69) holds and this completes the proof.

By Lemmas 9 and 10, one can easily get the following
result. □

Theorem 9. Let X be a Hilbert space and T, A ∈ LR(X)

satisfy that T is closed, D(T) ⊂ D(A), and A(0) ⊂ T(0). If A

is T-bounded with T-bound less that b, then AT is Ts-bounded
with Ts-bound less than b, b≥ 0.

Now, we give a relationship between the relatively com-
pact perturbation of T and Ts.

Theorem 10. Let X be a Hilbert space and T, A ∈ LR(X)

satisfy that T is closed, D(T) ⊂ D(A), and A(0) ⊂ T(0). If A

is T-compact, then AT is Ts-compact.
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Proof. It follows from (13) and Lemma 9 that XT � XTs
.

We suppose that A is T-compact. Ten, for any given
bounded sequence xn􏼈 􏼉

∞
n�1 in XT, and (QAA)(xn)􏼈 􏼉

∞
n�1 has a

convergent subsequence (QAA)(xnk
)􏽮 􏽯
∞
k�1 in X/A(0). So,

for each k≥ 1, there is ynk
∈ A(xnk

) such that ynk
􏽮 􏽯
∞
k�1 is

convergent in X by (iii) of Lemma 1. Let ynk
� ynk,1

+ ynk,2

with ynk,1
∈ T(0)⊥ and ynk,2

∈ T(0). Hence, AT(xnk
) � ynk,1

,
and ynk,1

􏽮 􏽯
∞
k�1

is convergent in T(0)⊥. Tis means
AT(xn)􏼈 􏼉

∞
n�1 has a convergent subsequence in T(0)⊥.

Terefore, AT is Ts-compact. Tus, the proof is complete.
With a similar argument to that used in the proof of

Teorem 10, one can easily show the following results
hold. □

Corollary 5. Let X and Y be Hilbert spaces and
A ∈ LR(X, Y). Ten, A is a compact relation if and only if
PAA is a compact operator, where PA: Y⟶ A(0)⊥ is an
orthogonal projection.

Corollary  . Let X be a Hilbert space and T, A ∈ LR(X)

satisfy that D(T) ⊂ D(A) and A(0) ⊂ T(0). If A is compact,
then AT is compact.

Proposition  . Let X be a Hilbert space and T, A ∈ LR(X)

satisfy that D(T) ⊂ D(A) ∩T(0)⊥ and A(0) ⊂ T(0). Ten,
A|

D(T)∩D(A)
is an Hermitian relation in X2 if and only if AT is

an Hermitian operator in T(0)⊥.

Proof. It follows from the assumption D(T) ⊂ T(0)⊥ that
D(AT) � D(T)∩D(A) ⊂ T(0)⊥, which means that AT is a
linear operator in the Hilbert space T(0)⊥.

Suppose that A|
D(T)∩D(A)

is an Hermitian relation in X2.
For any (f, g) and (h, k) ∈ AT, there exists (f, y), (h, z) ∈ A

such that y � g + y′ and z � k + z′, where y′, z′ ∈T(0).
Note that f, h ∈ D(AT) ⊂ T(0)⊥ and the assumption that
A|

D(T)∩D(A)
is Hermitian, we get

〈g, h〉 � 〈y, h〉 � 〈f, z〉 � 〈f, k〉. (70)

Hence, AT is an Hermitian operator in T(0)⊥.
Now, we consider the inverse. We assume that AT is an

Hermitian operator in T(0)⊥. We fxed
(x, y), (u, v) ∈ A|

D(T)∩D(A)
. Tere exist y1, v1 ∈ T(0)⊥ and

y2, v2 ∈T(0) such that y � y1 + y2 and v � v1 + v2. Hence,
(x, y1), (u, v1) ∈ AT. By the assumption that AT is Hermi-
tian and the fact that x, u ∈ D(AT) ⊂ T(0)⊥, we get

〈y, u〉 �〈y1, u〉 �〈x, v1〉 � 〈x, v〉. (71)

Terefore, A|
D(T)∩D(A)

is an Hermitian relation in X2.
Tis completes the proof.

Let X be a Hilbert space and T ∈ LR(X). If T is self-
adjoint, then D(T) � T∗(0)⊥ � T(0)⊥ by Proposition III.1.4
in [20], which together with Proposition 6, can easily achieve
the following result. □

Corollary 7. Let X be an Hilbert space and T, A ∈ LR(X),
satisfyingD(T) ⊂ D(A) andA(0) ⊂ T(0). IfT is self-adjoint,

then A|
D(T)∩D(A)

is an Hermitian relation in X2 if and only if
AT is a symmetric operator in T(0)⊥, that is, AT is a densely
defned Hermitian operator in T(0)⊥.

Now, we introduce the concept of degenerate linear re-
lation, which is a generation of single-valued case.

Defnition 5. LetXandYbe normed spaces andA ∈ LR(X, Y)

.Ais said to be degenerate ifAis bounded anddimR(A)<∞ .
Let A ∈ LR(X, Y) be degenerate. It is evident that QAA is

degenerate. Hence, QAA is compact (see p.160 in [27]), that
is, A is compact.

Motivated by the defnition of the norm of a linear
relation, we introduce the concept of trace class linear
relations.

Defnition 6. LetXandYbe Hilbert spaces
andA ∈ LR(X, Y)withD(A) � X. We say thatAbelongs to
trace class relations ifPAAbelongs to trace class operators,
wherePA: Y⟶ A(0)⊥is the orthogonal projection.

Theorem 11. Let X be a Hilbert space and T, A ∈ LR(X)

satisfy that D(T) ⊂ D(A) and A(0) ⊂ T(0). If A is degen-
erate, then AT is also degenerate.

Proof. We suppose that A is degenerate, that is, dimR(A) �

m<∞ and A is bounded. Ten, AT is bounded by Lemma
10. Let y1, y2, . . . , ym be a base of R(A). Tey can be
decomposed as yi � yi,1 + yi,2 with yi,1 ∈ T(0)⊥ and
yi,2 ∈T(0), i � 1, 2, . . . , m. Now, we show that for any given
z ∈ R(AT) ⊂ T(0)⊥, it can be expressed as a linear combi-
nation of yi,1, 1≤ i≤m. We then set (x, y) ∈ A with y �

z + y′, where y′ ∈T(0). Tere exist ci and i � 1, 2, . . . , m

such that

y � 􏽘
m

i�1
ciyi � 􏽘

m

i�1
ciyi,1 + 􏽘

m

i�1
ciyi,2 � z + y′. (72)

Note that z, 􏽐
m
i�1 ciyi,1 ∈ T(0)⊥ and y′, 􏽐

m
i�1 ciyi,2 ∈T(0),

we can get that z � 􏽐
m
i�1 ciyi,1, which yields that

dimR(AT)≤m<∞. Terefore, AT is degenerate and the
proof is complete.

Now, we recall a necessary and sufcient condition about
trace operators (cf., Teorem 7.12 in [28]). □

Lemma 11. Let T be an operator from Hilbert space X into
Hilbert space Y with D(T) � X. Ten, T belongs to trace
class operators if and only if there exist sequences fn􏼈 􏼉

∞
n�1

from X and gn􏼈 􏼉
∞
n�1 from Y such that ‖fn‖ � ‖gn‖ � 1 for

each n≥ 1, and there is a constant sequence cn􏼈 􏼉
∞
n�1 for

which 􏽐
∞
n�1 |cn|<∞ and T can be expressed as

T(x) � 􏽘
∞

n�1
cn〈x, fn〉gn, x ∈ X. (73)

Remark 4. In the case thatX � Yin Lemma 11, Tbelongs to
trace class operators if and only ifTcan be expressed as

10 Discrete Dynamics in Nature and Society



T(x) � 􏽘
∞

n�1
cn〈x, fn〉fn, x ∈ X, (74)

where fn􏼈 􏼉
∞
n�1 form an orthonormal family of eigenvectors

of T and the cn are the associated (repeated) eigenvalues with
􏽐
∞
n�1 |cn|<∞ (cf., [27], p.543).

Theorem 12. Let X be a Hilbert space and T, A ∈ LR(X)

with D(A) � X and D(T) � T(0)⊥, and A(0) ⊂ T(0). If A

belongs to trace class relations, then AT belongs to trace class
operators in T(0)⊥.

Proof. Te assumptions D(A) � X and D(T) � T(0)⊥

implies that D(AT) � D(T)∩D(A) � T(0)⊥.
We suppose that A belongs to trace class relations, that

is, PAA belongs to trace class operators. It follows from
Lemma 11 that there exist sequences fn􏼈 􏼉

∞
n�1 and gn􏼈 􏼉

∞
n�1

from X and cn􏼈 􏼉
∞
n�1 from C satisfying ‖fn‖ � ‖gn‖ � 1, n≥ 1,

and 􏽐
∞
n�1 |cn|<∞ such that

PAA( 􏼁(x) � 􏽘
∞

n�1
cn〈x, fn〉gn, x ∈ X. (75)

Let fn � fn,1 + fn,2 and gn � gn,1 + gn,2 with
fn,1, gn,1 ∈ T(0)⊥ and fn,2, gn,2 ∈T(0) for n≥ 1. We shall
show that AT � S|T(0)⊥ , where S � 􏽐

∞
n�1 cn〈·, fn,1〉gn,1.

Given any x ∈ D(AT), there is y ∈ X such that (x, y) ∈ A.
Since A(0) ⊂ T(0), y can be decomposed as y � y1 + y2 +

y3 with y1 ∈ T(0)⊥, y2 ∈ A(0)⊥ ∩T(0), and y3 ∈A(0).
Ten, AT(x) � y1 and (PAA)(x) � y1 + y2. By (75) and the
fact that x ∈ D(AT) � T(0)⊥, one can get that

y1 + y2 � 􏽘
∞

n�1
cn〈x, fn,1 + fn,2〉 gn,1 + gn,2􏼐 􏼑

� 􏽘
∞

n�1
cn〈x, fn,1〉gn,1 + 􏽘

∞

n�1
cn〈x, fn,1〉gn,2.

(76)

Note that y1, 􏽐
∞
n�1 cn〈·, fn,1〉gn,1 ∈ T(0)⊥ and

y2, 􏽐
∞
n�1 cn〈x, fn,1〉gn,2 ∈T(0), we have that AT(x) � y1 �

􏽐
∞
n�1 cn〈·, fn,1〉gn,1. Consequently, AT ⊂ S. Hence,

AT � S|T(0)⊥ . Let L: � n≥ 1: fn,1 ≠ 0  and gn,1 ≠ 0􏽮 􏽯. By set-
ting fn,1′ � fn,1/‖fn,1‖ and gn,1′ � gn,1/‖gn,1‖ for each n ∈ L,
we can get

AT\(x) � 􏽘
n∈L

cn fn,1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌 gn,1
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌〈x, fn,1′ 〉gn,1′ , x ∈ T(0)
⊥

, (77)

where 􏽐n∈L|cn|‖fn,1‖‖gn,1‖≤ 􏽐
∞
n�1 |cn|<∞. Terefore, AT

belongs to trace class in T(0)⊥ by Lemma 11. Tis completes
the whole proof. □

Remark 5. In the present study, we construct a linear op-
erator, which is induced by two linear relations, and then
establish the relationships between the perturbation terms of
a closed relation and the perturbation terms of its operator
part (seeTeorems 9–12), and give the relationships between
spectrum of a perturbed relation and spectrum of a per-
turbed operator (see Teorem 7). By using the results

obtained in the present study, we shall deeply study sta-
bilities of the spectra of linear relations under some per-
turbations in our forthcoming study, especially the
invariance of the absolutely continuous spectrum of a self-
adjoint linear relation under trace class perturbation.

Remark 6. Note that the constructing technique in the
present study can also be applied in our previous works. For
example, Teorem 5.2 in [29] can be followed by Lemma 3,
Corollary 7,Teorems 6 and 9, ([29], Lemma 5.8), and ([27],
Teorem V.4.3); Teorem 5.3 in [29] can be followed by
Lemmas 2, 3, and 10, Corollaries 4 and 7, Teorem 10, ([29],
Lemma 5.8); and ([27], Teorem V.4.10); Teorem 4.1 in
[22] can be followed by Lemmas 2 and 3, Corollaries 4 and 7,
Teorems 6 and 10, ([29], Lemma 5.8), and ([28], Teorem
9.9), respectively.
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