
Available online at www.sciencedirect.com
ScienceDirect

Fuzzy Sets and Systems 400 (2020) 134–146

www.elsevier.com/locate/fss

The structure stability of periodic solutions for first-order uncertain 

dynamical systems ✩

Rui Dai a, Minghao Chen b,∗

a School of Mathematics and Statistics, Beijing Technology and Business University, Beijing 100048, PR China
b School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, PR China

Received 14 April 2019; received in revised form 5 November 2019; accepted 17 January 2020
Available online 22 January 2020

Abstract

This paper studies the structural stability of periodic solutions for first-order fuzzy differential equations (FDEs) understood 
as differential inclusions, i.e., first-order uncertain dynamical systems. The existence and uniqueness of periodic solutions for this 
first-order fuzzy problems have been obtained on general fuzzy number space. When the forcing function has specific perturbations, 
the structural stability of the periodic solutions are discussed by using the support function, the Dini Theorem and the Convergence 
Theorem in the differential inclusion theory.
© 2020 Elsevier B.V. All rights reserved.
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1. Introduction

The theory of fuzzy mathematics has its unique advantages in dealing with uncertain factors in the real world. 
Fuzzy differential equations (FDEs) are often used in mathematical modeling of practical problems with uncertainties. 
Many studies are about solving fuzzy differential equations. Initial value problems of FDEs [25,32], boundary value 
problems of FDEs [5,9,12,14,31], periodic problems of FDEs [10,11,13,22–24] have been studied to some extent. 
And the widely used approaches to deal with the FDEs H-derivatives and Bede’s generalized derivatives have gotten 
abundant achievements (see [2,3,5,7,19,27,30]). But these approaches also have some limitations. For example, the 
support sets of the fuzzy solutions are nondecreasing in the sense of H-derivatives. So under the H-derivatives, the 
periodically of FDEs could not be studied very well (see [5,15]). For the simplest periodic problem for first-order 
fuzzy differential equation: x′ = (−1) ⊗ x, x(0) = x(1) (where x : [0, 1] → Ec, Ec is continuous fuzzy number space 
and “⊗” is the operation of product based on Zadeh’s Extension Principle) has no solutions under H-derivatives. But 
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it can be solved by differential inclusion method (see [11,12]). To overcome this defect, Hüllermeier [20], Diamond 
et al. [15,17] proposed another approach the differential inclusion method. This method is quite effective in solving 
the FDEs. Meanwhile it’s helpful in the study of the periodically, stability and bifurcation behaviors of FDEs. And 
differential inclusion method becomes more and more popular (see [1,10,14,15,17,20,21,23,32]).

For first-order FDEs, there are many studies that use different methods to solve them from various angles (see 
[6,11,23,30,32]). But for the following periodic problems of first-order FDEs:{

x′(t) = f (t, x(t)),

x(0) = x(T )

where I
�= [0, T ] (T > 0), f : I × En → En. By the Theorem 4.1 of [12], there is no nontrivial solution for above 

FDEs under H-derivatives. In [11], M. Chen et al. consider above FDEs as periodic solutions for first-order fuzzy 
differential inclusion problems:{

ξ ′(t) ∈ f (t, ξ(t)),

ξ(0) = ξ(T )

where I
�= [0, T ] (T > 0), f : I × R → Ec . ∀ξ ∈ R, u ∈ Ec, ξ ∈ u means u(ξ) = μu(ξ) > 0, where μu is the 

membership function of u. And the existence and uniqueness of periodic solutions for above problems have been 
obtained under some conditions on Ec. For general fuzzy number space En, the fuzzy numbers on En could not 
be represented by the new parameter method (see [12]). So in this paper, the metric on En is defined by using the 
support function. And then the differential inclusion method could be used to discuss the existence and uniqueness of 
periodic solutions for first-order fuzzy differential inclusion problems on En. And the structural stability of periodic 
solutions has also been discussed and verified by this method, when the forcing function f (t, ξ(t)) has some specific 
perturbations as follows:{

ξ ′(t) ∈ fk(t, ξ(t)),

ξ(0) = ξ(T )

where t ∈ I
�= [0, T ] ⊂ R, and fk : I × Rn → En.

This paper is organized as follows. Section 2 provides the basic definitions, properties and theories in the fuzzy 
space En. In Section 3, the existence and uniqueness of periodic solutions have been proved for first-order uncertain 
dynamical systems under some conditions. In Section 4 we obtained the structural stability of periodic solutions for 
this problem. In Section 5, the conclusion is given.

2. Preliminaries

In this section, we present the basic concepts, properties and theories of En that are used in this study. Especially, 
the definition of the metric on En which is defined by using the support function is introduced.

Definition 2.1. [16] Let Dn be the set of upper semicontinuous normal fuzzy sets with compact supports in Rn and 
En be the set of fuzzy convex subsets of Dn.

Theorem 2.1 (Stacking Theorem). [17] Let {Aα ⊂ Rn| 0 ≤ α ≤ 1} be a class of nonempty compact sets satisfying

(i) Aβ ⊂ Aα (0 ≤ α ≤ β ≤ 1),

(ii) Aα =
∞⋂

n=1
Aαn for any nondecreasing sequence {αn} in [0, 1] satisfying αn → α.

Then there exists v ∈ Dn such that [v]α = Aα (0 < α ≤ 1). Especially if Aα is convex, v ∈ En. On the other hand, 
if v ∈ Dn, the level set [v]α satisfies (i) and (ii) above. If v ∈ En, [v]α is convex.
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In above theorem, if Aα belong to some general Banach space, the Stacking Theorem is also holds. And for the 
fuzzy number space En, properties are given as follows.

Definition 2.2. [8] Let En = {u|u : Rn → [0, 1], and u satisfies the following conditions (i)-(v)},

(i) u is normal, i.e., ∃m ∈ Rn such that u(m) = 1,
(ii) [u]0 = cl{ξ ∈ Rn|u(ξ) > 0} is compact in Rn,

(iii) u is fuzzy convex in Rn,
(iv) u is upper semicontinuous on Rn.

Theorem 2.2. [8] For u ∈ En, denote [u]α = {ξ ∈ Rn|u(ξ) ≥ α} (0 < α ≤ 1), the following (1)-(3) hold:

(1) [u]α be the nonempty convex compact subsets of Rn, for all α ∈ [0, 1],
(2) [u]β ⊂ [u]α (0 ≤ α ≤ β ≤ 1),

(3) [u]α =
∞⋂

n=1
[u]αn for any nondecreasing sequence {αn} in (0, 1] satisfying αn → α in (0, 1].

Conversely, if exists Aα ⊂ Rn satisfy (1)-(3) above for all α ∈ [0, 1], then ∃u ∈ En such that [u]α = Aα, α ∈ (0, 1], 
and [u]0 = ⋃

α∈(0,1]
[u]α ⊂ A0.

By above definitions and theorems, the fuzzy number u ∈ En, (n > 1) hasn’t the parametric representation which 
exists in E1: u = (u1, u2) ∈ En. Like in [32], denote D(u, v) = sup

0≤α≤1
H([u]α, [v]α), where u, v ∈ Dn, H is the 

Hausdorff metric on Pk(Rn), where Pk(Rn) be the nonempty compact subset of Rn. And H(A, B) = sup{|σA(x) −
σB(x)| : x ∈ Sn−1}, where A, B ∈ Pk(Rn), Sn−1 = {x ∈ Rn : ||x||2 = 1}, || · ||2 be the Euclidean norm on Rn, and 
σA(x) = sup{〈x, y〉 : y ∈ A} be the support function of A, 〈x, y〉 means the inner product of x and y, x, y ∈ Rn. Then 
D(·, ·) is also the usual Hausdorff metric on Dn or En. And the zero of En is defined by 0̂ : Rn → [0, 1], and

0̂(x) =
{

1, if x = 0,

0, otherwise.

On the fuzzy space En, calculus does also exist. The following properties are used in this paper.

Definition 2.3. [8] Let f : [a, b] → En, t0 ∈ [a, b]. If ∀ε > 0, ∃δ > 0, such that D(f (t), f (t0)) < ε whenever t ∈
[a, b] and |t − t0| < δ, then we say that f is continuous at t0. If f is continuous at each point of [a, b], we say that f
is continuous on [a, b].

Definition 2.4. [8] Let f : [a, b] → En, t0 ∈ [a, b]. If there exists f ′(t0) ∈ En, ∀ε > 0, ∃δ > 0 such that 
D(

f (t)−f (t0)
t−t0

, f ′(t0)) < ε whenever t ∈ [a, b], 0 < t − t0 < δ and D(
f (t0)−f (t)

t0−t
, f ′(t0)) < ε whenever t ∈ [a, b], 

0 < t0 − t < δ, then we say that f is derivable at t0, where f (t) − f (t0) is the H-difference of f (t) and f (t0), 
f (t0) − f (t) is the H-difference of f (t0) and f (t). If f is derivable at each point of [a, b], we say that f is derivable 
on [a, b].

Definition 2.5. [8] Let f : [a, b] → En. We call f is measurable, if for each α ∈ [0, 1], the set-valued mapping 
[f ]α : [a, b] → Pkc(Rn) is measurable, where [f ]α is the α-level cut of f , Pkc(Rn) be the set of nonempty compact 
and convex subset of Rn.

Definition 2.6. [8] Let f : [a, b] → En. We call f is integrably bounded, if there exists a Lebesgue integrable function 
h(t), such that for each x ∈ [f ]0, ||x||2 ≤ h(t).
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Definition 2.7. [8] Let f : [a, b] → En is integrably bounded, for all measurable subset A ∈ [a, b], define

[
∫
A

f (t)dt]α =
∫
A

[f ]αdt

= {
∫
A

g(t)dt | g(t) ∈ [f ]α be an integrable selector of [f ]α}

if there exists u ∈ En, such that [u]α = [∫
A

f (t)dt]α , α ∈ [0, 1], then we call f is integrably on [a, b], and 
∫
A

f (t)dt =
u.

Proposition 2.1. [8] Let f : [a, b] → En be continuous, then f is integrable on [a, b].

Proposition 2.2. [8] Let f : [a, b] → En be integrable on [a, b], a ≤ c ≤ b, then f is integrable on [a, c], [c, b] and

b∫
a

f (t)dt =
c∫

a

f (t)dt +
b∫

c

f (t)dt.

Theorem 2.3. [8] Let f : [a, b] → En be continuous on [a, b], then⎛
⎝ t∫

a

f (τ)dτ

⎞
⎠

′

= f (t), t ∈ [a, b].

3. The existence of periodic solutions

In this section, the following periodic problem for first-order uncertain dynamical system will be studied:{
ξ ′(t) ∈ f (t, ξ(t)),

ξ(0) = ξ(T )
(3.1)

where t ∈ I
�= [0, T ] ⊂ R, f : I × Rn → En. By taking the α-cut of (3.1), the following class of differential inclusions 

are taken into consideration.

ξ ′(t) ∈ F(t, ξ(t), α), ξ(0) = ξ(T ) (α ∈ [0,1]), (3.2)

denote F(t, ξ(t), α) = [f (t, ξ(t))]α .
Like [9], the definitions of solutions to (3.1) and (3.2) are given as follows.

Definition 3.1. Define ξ(t) be a solution of (3.2) for any fixed α ∈ [0, 1], if ξ(t) satisfies the following conditions:

(1) ξ(t) is absolutely continuous on I ;
(2) ξ ′(t) ∈ F(t, ξ(t), α) a.e. on I ;
(3) ξ(0) = ξ(T ).

Definition 3.2. For α ∈ [0, 1], define 	α(I ; t) = {ξ(t)|ξ(t) is a solution of (3.2)} be the set of solutions of (3.2).

Definition 3.3. Define v : I → Dn be the solution of (3.1), if v(t) satisfies: [v(t)]α = 	α(I ; t) (t ∈ I, 0 ≤ α ≤ 1).

Before solving the problem (3.1), some definitions and lemmas are needed.
Let W 1,1([a, b], Rn) be the Sobolev space with the norm ||x||W 1,1 = ∫ b

a
||x(t)||2dt + ∫ b

a
||x′(t)||2dt for x ∈

W 1,1([a, b], Rn), then W 1,1([a, b], Rn) is a Banach space and W 1,1([a, b], Rn) can be compactly embedded into 
L1([a, b], Rn) (see [26]).
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Lemma 3.1. [26] Let AC([a, b], Rn) be the set of absolutely continuous functions on [a, b], then x ∈ AC([a, b], Rn)

if and only if x ∈ W 1,1([a, b], Rn).

Lemma 3.2. [24] Let W 1,1
p (I, Rn) = {ξ ∈ W 1,1(I, Rn)| ξ(0) = ξ(T )}. If L : W

1,1
p (I, Rn) → L1(I, Rn) is defined as 

L(ξ) = ξ ′ − ξ , then L is invertible, and L−1 : L1(I, Rn) → L1(I, Rn) is a compact operator.

Definition 3.4. [4] Let Y and Z be Hausdorff topological spaces. We say that the set-valued mapping G : Y → 2Z \{φ}
is upper semicontinuous, if for any nonempty closed subset C of Z, the set G−(C) = {y ∈ Y | G(y) ∩ C �= φ} is a 
closed subset of Y .

For a Banach space Y , let Pkc(Y ) and Pwk(Y ) be the set of nonempty compact and convex subsets of Y and the 
set of nonempty weakly compact subsets of Y , respectively. Let (�, 	, μ) be a measure space and Lp(�, Y) be the 
space of p−Bochner integrable functions (p ≥ 1).

Lemma 3.3. [28] Let {fn}∞n=1 ⊂ Lp(�, Y), f ∈ Lp(�, Y), fn
w→ f and fn(x) ∈ G(x) μ− a.e. on �, where G(x) ∈

Pwk(Y ) μ− a.e. on �. Then f (x) ∈ conv(w − lim{fn(x)}n≥1) μ− a.e. on �.

Lemma 3.4. [18] Let Y be a Banach space, C be a nonempty closed and convex subset of Y and the null element 
θ ∈ C. If G : C → Pkc(C) is upper semicontinuous and maps any bounded set into sequentially compact set, then 
either the set J = {x ∈ C| x ∈ λG(x), λ ∈ (0, 1)} is unbounded or the set-valued mapping G admits a fixed point, i.e. 
there exists x ∈ C such that x ∈ G(x).

Theorem 3.1. Suppose that f : I × Rn → En satisfies:

(i) f ∈ C(I × Rn, En), i.e. f is continuous on I × Rn.
(ii) There exist β > 0, α(t) ∈ L1(I, Rn+) such that

D(f (t, ξ), 0̂) ≤ α(t) + β||ξ ||2 a.e. on I .

(iii) There exists G > 0 such that whenever ||ξ0||2 > G there exist δ(ξ0) > 0, m(ξ0) > 0 such that

inf{〈ξ, ζ 〉|ζ ∈ [f (t, ξ)]0, ||ξ − ξ0||2 < δ(ξ0)} ≥ m(ξ0),

for a.e. t ∈ I .

Then the set of solutions 
∑

α(I ; t) to (3.2) is nonempty and 
∑

α(I ; t) is uniformly bounded (0 ≤ α ≤ 1).

Proof. By Lemma 3.1-3.4, and similar to the proof of [24] and Theorem 3.1-3.2 of [11], the above conclusion can be 
concluded. �
Lemma 3.5. [29] Let B be a separable normed linear space. Then any bounded set in B∗ is weakly∗ sequentially 
compact.

Lemma 3.6. [15] Let � be a open set of R × Rn, f : � → En is upper semicontinuous, and let F(t, ξ(t), α) =
[f (t, ξ)]α : � × [0, 1] → Pkc(Rn). Then F(t, ξ(t), α) is upper semicontinuous in � × [0, 1].

Lemma 3.7 (Convergence Theorem). [4] Let F be a proper semicontinuous map from a Hausdorff locally convex 
space X to the closed convex subsets of a Banach space Y . Let I be an interval of R and xk and yk be measurable 
functions from I to X and Y respectively satisfying: for almost all t ∈ I , for every neighborhood N of θ in X × Y , 
there exists k0 = k0(t, N) such that ∀k ≥ k0, (xk(t), yk(t)) ∈ graph(F ) + N . If

i) xk(·) converges almost everywhere to a function x(·) from I to X,
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ii) yk(·) belongs to L1(I, Y) and converges weakly to y(·) in L1(I, Y),

then for almost all t ∈ I , (x(t), y(t)) ∈ graph(F ), i.e., y(t) ∈ F(x(t)).

Theorem 3.2. Suppose that f : I × Rn → En satisfies:

(i) f ∈ C(I × Rn, En).
(ii) There exist β > 0, α(t) ∈ L1(I, Rn+) such that

D(f (t, ξ), 0̂) ≤ α(t) + β||ξ ||2 a.e. on I .

(iii) There exists G > 0 such that whenever ||ξ0||2 > G there exist δ(ξ0) > 0, m(ξ0) > 0 such that

inf{〈ξ, ζ 〉| ζ ∈ [f (t, ξ)]0, ||ξ − ξ0||2 < δ(ξ0)} ≥ m(ξ0),

for a.e. t ∈ I .
Then there exists a solution v : I → Dn of (3.1) such that [v(t)]α = ∑

α(I ; t) (t ∈ I ), α ∈ [0, 1], and v(0) =
v(T ).

Proof. From the definition of the solution to (3.1) (Definition 3.3), the existence of 	α(I ; t) to (3.2) should be proved 
first. By Theorem 3.1, 	α(I ; t) �= φ (0 ≤ α ≤ 1). Denote 	α = 	α(I ; t) for simplicity.

Then, the existence of solution v : I → Dn such that [v(t)]α = 	α(I ; t) (t ∈ I, 0 ≤ α ≤ 1) will be proved. The 
Theorem 2.1 (Stacking Theorem) is used in this case. 	α �= φ (0 ≤ α ≤ 1) has been gotten already. Next, 	α (0 ≤
α ≤ 1) are compact sets should be proved.

For ∀ξ ∈ 	α be a solution to (3.2), then

ξ ′(t) ∈ F(t, ξ(t), α) ⊂ F(t, ξ(t),0).

By Theorem 3.1, {ξ(t)|ξ ∈ 	α} is uniformly bounded on I . Then there exists M > 0, such that ∀ξ ∈ ∑
α(I ; ·), 

||ξ(t)||2 ≤ M(t ∈ I ), α ∈ [0, 1]. As ξ ′(t) ∈ F(t, ξ(t), α) a.e. on I and f is continuous on [0, T ] × [−M, M], there 
exists M ′ > 0 such that ||ξ ′(t)||2 ≤ M ′ a.e. on I (0 ≤ α ≤ 1).

By the definition of solution to (3.2), {ξ(t)|ξ ∈ 	α} is absolutely continuous on I , then {ξ(t)|ξ ∈ 	α} is equicon-
tinuous on I .

It can be concluded that {ξ(t)|ξ ∈ 	α} is uniformly bounded and equicontinuous on I and {ξ ′(t)|ξ ∈ 	α} is 
bounded in L∞(I, Rn).

As L1(I, Rn) is a separable Banach space and (L1(I, Rn))∗ = L∞(I, Rn), by Lemma 3.5 the set {ξ ′(·)|ξ ∈ 	α} ⊂
L∞(I, Rn) is weakly∗ sequentially compact. Then, arbitrarily choose {ξn} ⊂ 	α , there exists a subsequence {ξnk

} of 

{ξn} such that ξ ′
nk

weakly∗
−→ ζ ∈ L∞(I, Rn), i.e., ∀h ∈ L1(I, Rn), have

T∫
0

〈h(t), ξ ′
nk

(t)〉dt →
T∫

0

〈h(t), ζ(t)〉dt.

Suitably choosing h ∈ L1(I, Rn), have

t∫
0

ξ ′
nk

(s)ds →
t∫

0

ζ(s)ds.

And by Ascoli-Arzelá Theorem, without loss of generality, assume that there exists ξ ∈ C(I, Rn) such that

max ||ξnk
(t) − ξ(t)||2 → 0.
t∈I
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As ξnk
(t) is absolutely continuous (k = 1, 2, · · · ), then ξnk

(t) − ξnk
(0) → ∫ t

0 ζ(s)ds and further

ξnk
(t) → ξ(0) +

t∫
0

ζ(s)ds.

So ξ(t) = ξ(0) + ∫ t

0 ζ(s)ds, i.e., ξ(t) is absolutely continuous and ζ = ξ ′ ∈ L∞(I, Rn). Then ∀h ∈ L1(I, Rn), have

T∫
0

〈h(t), ξ ′
nk

(t)〉dt →
T∫

0

〈h(t), ξ ′(t)〉dt.

As ξ ′
nk

(t) ∈ F(t, ξnk
(t), α) a.e. on I , by the continuity of f and Proposition 2.1-2.2, ∀[a, b] ⊂ I , then

b∫
a

ξ ′
nk

(t)dt ∈
b∫

a

F (t, ξnk
(t), α)dt (k = 1,2, · · · ).

After suitably choosing h ∈ L1(I, Rn), it can be gotten that 
∫ b

a
ξ ′
nk

(t)dt → ∫ b

a
ξ ′(t)dt . Therefore, by the continuity of 

f , have

b∫
a

ξ ′(t)dt ∈
b∫

a

F (t, ξ(t), α)dt.

Then for t ∈ I, t + �t ∈ I (�t > 0), have

1

�t

t+�t∫
t

ξ ′(s)ds ∈ 1

�t

t+�t∫
t

F (s, ξ(s), α)ds.

By the absolute continuity of ξ(t), the continuity of f and Theorem 2.3, letting �t → 0, then

ξ ′(t) ∈ F(t, ξ(t), α) a.e. on I.

From ξnk
(0) = ξnk

(T ), it is immediate that ξ(0) = ξ(T ). Therefore, ξ ∈ 	α .
Then from the argument above there exists a subsequence {ξnk

} of {ξn} ⊂ 	α such that ∃ξ ∈ 	α satisfying

max
t∈I

||ξnk
(t) − ξ(t)||2 → 0, and ξ ′

nk

weakly∗
−→ ξ ′.

As L1(I, Rn) is separable, without loss of generality, assume that there exists {hk} ⊂ L1(I, Rn) such that 

{hk} = L1(I, Rn) and hk �= 0 (k = 1, 2, · · · ). Denote A 
�= {ξ(·) ∈ C(I, Rn)|ξ ′(·) ∈ L∞(I, Rn)}. For A, introduce 

the following norm:

||ξ ||∗ = max
t∈I

||ξ(t)||2 +
∞∑

k=1

1

2k||hk||L1

∣∣∣∣∣∣
T∫

0

〈hk(t), ξ
′(t)〉dt

∣∣∣∣∣∣ , ∀ξ ∈A,

then it is easy to verify that (A, || · ||∗) is a normed linear space and 	α is a bounded subset of A. Moreover it is 
obvious that for {ξn} ⊂ A, ξ ∈ A and {ξ ′

n} bounded in L∞(I, Rn), then ||ξn − ξ ||∗ → 0 if and only if max
t∈I

||ξn(t) −
ξ(t)||2 → 0 and ξ ′

n

weakly∗
−→ ξ ′.

So it can be concluded that 	α is a compact subset of A.
Finally, to proof that 	α satisfy the condition (i) and (ii) of the Theorem 2.1 (Stacking Theorem).
As f : I × Rn → En, it is obvious that 	β ⊂ 	α (0 ≤ α ≤ β ≤ 1).
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Let {αn} ⊂ [0, 1] be monotone increasing and αn → α ∈ [0, 1], then it is easy to get that 	α ⊂
∞⋂

n=1
	αn . For ∀ξ∗(t) ∈

∞⋂
n=1

	αn , we’ll prove that ξ∗(t) ∈ 	α . As the graph of F : Gr(F) is compact, then inf{||a − b||2 : a ∈ Gr(F), b ∈
(Gr(F ) +N)c} > ε > 0, where ε > 0 is sufficiently small, N is the neighborhood of null element θ in � ×Rn ×[0, 1]
and � is the open set of R × Rn. As F(t, ξ, α) = [f (t, ξ)]α is upper semicontinuous, then there exists U is the 
neighborhood of (t, ξ∗(t), α), have F(s, ξ(s), β) ⊂ F(t, ξ∗(t), α) + εB for ∀(s, ξ(s), β) ∈ U , where B is the unit ball 
in Rn. Let n sufficiently large, then (t, ξ∗(t), αn) ∈ U , we have F(t, ξ∗(t), αn) ⊂ F(t, ξ∗(t), α) + εB . That is to say 
(t, ξ∗(t), αn, ξ∗′(t)) ∈ Gr(F) + N . By Lemma 3.7 (Convergence Theorem), we have ξ∗′(t) ∈ F(t, ξ∗(t), α). And as 

ξ∗(t) ∈
∞⋂

n=1
	αn , then ξ∗(0) = ξ∗(T ). So ξ∗(t) ∈ 	α . Then we have 	α =

∞⋂
n=1

	αn .

Therefore by the Theorem 2.1 (Stacking Theorem), there exists unique v : I → Dn such that [v(t)]α = 	α (0 ≤
α ≤ 1), t ∈ I . Then there exists a unique solution v(t) (t ∈ I ) of (3.1). �
Example 3.1. For (3.1), take I = [0, 1], f (t, ξ) = et ⊗ u0 + ξ, u0 ∈ E1 and [u0]α = [1 + α, 3 − α], α ∈ [0, 1]. Then 
f satisfies the conditions (i), (ii) in Theorem 3.2. And for condition (iii), there exists G = 1.5 > 0 such that whenever 
||ξ0||2 > G there exist δ(ξ0) = 0.4 > 0, m(ξ0) = 0.11 > 0 such that

inf{〈ξ, ζ 〉| ζ ∈ [f (t, ξ)]0, ||ξ − ξ0||2 < δ(ξ0)} ≥ m(ξ0),

for a.e. t ∈ I . So there exists the unique periodic solution v : [0, 1] → D1 to (3.1) with v(0) = v(1), v(t) = et (t +
e

1−e ) ⊗u0, with v(0) = v(1) = e
1−e ⊗u0, where “⊗” is the operation of product based on Zadeh’s Extension Principle.

Example 3.2. For (3.1), take I = [0, 1], f (t, ξ) = e−t ⊗ u + ξ, u ∈ En. Then f satisfies the conditions (i), (ii) in 
Theorem 3.2. And for condition (iii), let l = inf{||μ||2 | μ ∈ [u]0}, there exists G = l+2

e > 0 such that whenever 
||ξ0||2 > G there exist δ(ξ0) = 1

e > 0, m(ξ0) = l+1
e2 > 0 such that

inf{〈ξ, ζ 〉| ζ ∈ [f (t, ξ)]0, ||ξ − ξ0||2 < δ(ξ0)} ≥ m(ξ0),

for a.e. t ∈ I . So there exists the unique periodic solution v : [0, 1] → Dn to (3.1) with v(0) = v(1), where v(t) =
− 1

2 et (e−1 + e−2t ) ⊗ u, with v(0) = v(1) = − 1
2 (1 + e−1) ⊗ u.

4. The structural stability of periodic solutions

In section 3, the existence of periodic solutions for first-order uncertain dynamical system has been proved on En. 
The structural stability of periodic solutions is also an interesting property that we are concerned about. Next we will 
discuss structure to the first-order uncertain dynamical system if given a specific perturbation to the forcing function 
as follows.{

ξ ′(t) ∈ fk(t, ξ(t)),

ξ(0) = ξ(T )
(4.1)

where t ∈ I
�= [0, T ] ⊂ R, and fk : I × Rn → En. By taking the α-cut of (4.1), it can be considered as a class of 

differential inclusions:

ξ ′(t) ∈ [fk(t, ξ(t))]α, ξ(0) = ξ(T ) (α ∈ [0,1]). (4.2)

Theorem 4.1. Suppose that f, fk : I ×Rn → En satisfies (i), (ii) and (iii) in Theorem 3.2, and (iv) lim
k→∞D(fk, f ) = 0.

Then the solution vk : I → Dn to (4.1) and the solution v : I → Dn to (3.1) satisfy lim
k→∞D(vk, v) = 0 for t ∈ I .

Proof. By the Theorem 3.2, the existences of solutions vk, v : I → Dn such that [vk(t)]α = 	k
α(I ; t), [v(t)]α =

	α(I ; t) (t ∈ I, 0 ≤ α ≤ 1) are obvious. Denote 	k
α = 	k

α(I ; t), 	α = 	α(I ; t) for simplicity.
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From (iv), ∀ε > 0, there exists K , when k > K , we have D(fk, f ) < 1
2ε, i.e., sup

0≤α≤1
H(Fk, F) < 1

2ε. By the defini-

tion of Hausdorff metric H , H(Fk, F) = max{ρ(Fk, F), ρ(F, Fk)}, where ρ(Fk, F) = inf{ε > 0 | Fk ⊂ N(F, ε)} =
inf{ε > 0 | Fk ⊂ F + εB}, ρ(F, Fk) = inf{ε > 0 | F ⊂ N(Fk, ε)} = inf{ε > 0 | F ⊂ Fk + εB}. Therefore ∀ε > 0, 
there exists K , when k > K , we have

Fk(t, ξ,α) ⊂ F(t, ξ,α) + 1

2
εB

F(t, ξ,α) ⊂ Fk(t, ξ,α) + 1

2
εB

∀α ∈ [0, 1], t ∈ I , where F(t, ξ, α), Fk(t, ξ, α) ∈ Pk(Rn).
For ∀ξ∗(t) ∈ lim

k→∞	k
α , there exists ξk(t) ∈ 	k

α with lim
k→∞ ξk(t) = ξ∗(t) for ∀t ∈ I . And we have

{
ξk

′(t) ∈ Fk(t, ξk(t), α) ∈ F(t, ξk(t), α) + 1
2εB,

ξk(0) = ξk(T )

Next we’ll prove that ξ∗(t) ∈ 	α . As F ∈ Pk(Rn), then the graph of F : Gr(F) is compact and inf{||a − b||2 : a ∈
Gr(F), b ∈ (Gr(F ) +N)c} > ε > 0, where ε > 0 is sufficiently small, N is the neighborhood of null element θ in � ×
Rn ×[0, 1] and � is the open set of R ×Rn. And as F(t, ξ, α) = [f (t, ξ)]α is upper semicontinuous, then there exists 
U is the neighborhood of (t, ξ∗(t), α), have F(s, ξ(s), β) ⊂ F(t, ξ∗(t), α) + 1

2εB for ∀(s, ξ(s), β) ∈ U , where B is 
the unit ball in Rn. Let k sufficiently large, then (t, ξk(t), α) ∈ U and F(t, ξk(t), α) ⊂ F(t, ξ∗(t), α) + 1

2εB . And then 
Fk(t, ξk(t), α) ⊂ F(t, ξ∗(t), α) + εB . That is to say (t, ξk(t), α, ξk

′(t)) ∈ Gr(F) + N . By Lemma 3.7 (Convergence 
Theorem), we have ξ∗′(t) ∈ F(t, ξ∗(t), α). And as ξ∗(t) ∈ lim

k→∞	k
α , then ξ∗(0) = ξ∗(T ). So ξ∗(t) ∈ 	α . Then we 

have lim
k→∞	k

α ⊂ 	α .

For ∀ξ∗(t) ∈ 	α , we have{
ξ∗′(t) ∈ F(t, ξ∗(t), α) ⊂ Fk(t, ξ

∗(t), α) + 1
2εB,

ξ∗(0) = ξ∗(T )

For ξ∗(t), there exists (t, ξδk
(t), α) in the neighborhood U of (t, ξ∗(t), α), have |ξδk

(t) − ξ∗(t)| < δk for t ∈ I

and ξδk
(0) = ξδk

(T ). And then (t, ξ∗(t), α) is also in the neighborhood Uδk
of (t, ξδk

(t), α). As Fk(t, ξ, α) =
[fk(t, ξ)]α is upper semicontinuous, then Fk(t, ξ∗(t), α) ⊂ Fk(t, ξδk

(t), α) + 1
2εB . That is to say (t, ξ∗(t), α, ξ∗′(t)) ∈

Gr(Fk(t, ξδk
(t), α)) +N . By Lemma 3.7 (Convergence Theorem), we have ξδk

′(t) ∈ Fk(t, ξδk
(t), α). And it’s obvious 

that ξδk
(t) is absolutely continuous. So ξδk

(t) ∈ 	k
α . Then we have 	α ⊂ lim

k→∞	k
α . Therefore, 	α = lim

k→∞	k
α .

Then lim
k→∞D(vk, v) = lim

k→∞ sup
0≤α≤1

H(	k
α, 	α) = 0. �

Theorem 4.1 has proved that the structure stability of first-order uncertain dynamical systems if the perturbation 
forcing functions converges. And if the perturbation forcing functions are also monotone, then a better result could be 
obtained. Before that, the definition of monotone fuzzy numbers is given as follows.

For u, v ∈ Dn, u ⊂ v if and only if [u]α ⊂ [v]α (∀α ∈ [0, 1]). For {un} ⊂ Dn is monotone, if un+1 ⊂ un or un ⊂
un+1, (n = 1, 2, ...) (see [32]).

Theorem 4.2. Suppose that f, fk : I × Rn → En satisfies (i), (ii) and (iii) in Theorem 3.2, and (iv) fk is monotone, 
and lim

k→∞D(fk, f ) = 0.

Then the solution vk : I → Dn to (4.1) and the solution v : I → Dn to (3.1) satisfy lim
k→∞D(vk, v) = 0 uniformly for 

t ∈ I .

Proof. By the Theorem 3.2, the existences of solutions vk, v : I → Dn such that [vk(t)]α = 	k
α(I ; t), [v(t)]α =

	α(I ; t) (t ∈ I, 0 ≤ α ≤ 1) are obvious. Denote 	k
α = 	k

α(I ; t), 	α = 	α(I ; t) for simplicity.
As fk is monotone, two situations will be discussed to prove that lim D(vk, v) = 0 uniformly for t ∈ I .
k→∞
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(1) If fk is monotone decreasing, i.e., fk+1 ⊂ fk , (k = 1, 2, ...).
From (iv), we have

F(t, ξ,α) ⊂ · · · ⊂ Fk+1(t, ξ, α) ⊂ Fk(t, ξ,α) ⊂ · · · ⊂ F1(t, ξ, α),

∀α ∈ [0, 1], where F(t, ξ, α), Fk(t, ξ, α) ∈ Pk(Rn).
For ∀ξ∗(t) ∈ 	α , we have

{
ξ∗′(t) ∈ F(t, ξ∗(t), α) ⊂ · · · ⊂ Fk(t, ξ

∗(t), α) ⊂ · · · ⊂ F1(t, ξ
∗(t), α),

ξ∗(0) = ξ∗(T )

then ξ∗(t) ∈ 	k
α and 	α ⊂ · · · ⊂ 	k

α ⊂ · · · ⊂ 	1
α . So it is obvious that 	α ⊂

∞⋂
k=1

	k
α .

For ∀ξ∗(t) ∈
∞⋂

k=1
	k

α , there exists ξk(t) ∈ 	k
α with lim

k→∞ ξk(t) = ξ∗(t) for ∀t ∈ I . As lim
k→∞D(fk, f ) = 0 uniformly 

for t ∈ I , then

H(Fk(t, ξ,α),F (t, ξ,α)) → 0,

for ∀t ∈ I , ∀α ∈ [0, 1].
As the graph of F : Gr(F) is compact, then inf{||a − b||2 : a ∈ Gr(F), b ∈ (Gr(F ) + N)c} > ε > 0, where ε > 0

is sufficiently small, N is the neighborhood of null element θ in � × Rn × [0, 1] and � is the open set of R × Rn. 
As F(t, ξ, α) = [f (t, ξ)]α is upper semicontinuous, then there exists U is the neighborhood of (t, ξ∗(t), α), have 
F(s, ξ(s), β) ⊂ F(t, ξ∗(t), α) + 1

2εB for ∀(s, ξ(s), β) ∈ U , where B is the unit ball in Rn. Let k sufficiently large, 
then (t, ξk(t), α) ∈ U and Fk(t, ξk(t), α) ⊂ F(t, ξk(t), α) + 1

2εB . And then Fk(t, ξk(t), α) ⊂ F(t, ξ∗(t), α) +εB . That 
is to say (t, ξk(t), α, ξk

′(t)) ∈ Gr(F) + N . By Lemma 3.7 (Convergence Theorem), we have ξ∗′(t) ∈ F(t, ξ∗(t), α). 

And as ξ∗(t) ∈
∞⋂

k=1
	k

α , then ξ∗(0) = ξ∗(T ). So ξ∗(t) ∈ 	α . Then we have 	α =
∞⋂

k=1
	k

α .

Let ϕk(x) = σ	k
α
(x), ϕ(x) = σ	α(x), x ∈ Sn−1, then ϕk(x), ϕ(x) are continuous with respect to x, and 

lim
k→∞ϕk(x) = ϕ(x). For each fixed x, ϕk(x) is monotonously decreasing, then by Dini Theorem, lim

k→∞ϕk(x) = ϕ(x)

uniformly with respect to x ∈ Sn−1.
Therefore,

H(	k
α,	α) = sup

x∈Sn−1
{|σ	k

α
(x) − σ	α(x)| : x ∈ Sn−1} → 0, k → ∞

uniformly for α ∈ [0, 1].
Then lim

k→∞D(vk, v) = lim
k→∞ sup

0≤α≤1
H(	k

α, 	α) = 0, uniformly for t ∈ I .

(2) If fk is monotone increasing, i.e., fk ⊂ fk+1, (k = 1, 2, ...).
From (iv), we have

F1(t, ξ, α) ⊂ · · · ⊂ Fk(t, ξ,α) ⊂ Fk+1(t, ξ, α) ⊂ · · · ⊂ F(t, ξ,α),

∀α ∈ [0, 1], where F(t, ξ, α), Fk(t, ξ, α) ∈ Pk(Rn).
As{

ξ ′(t) ∈ F1(t, ξ(t), α) ⊂ · · · ⊂ Fk(t, ξ(t), α) ⊂ · · · ⊂ F(t, ξ(t), α),

ξ(0) = ξ(T )

then 	1
α ⊂ · · · ⊂ 	k

α ⊂ · · · ⊂ 	α .
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For ∀ξ∗(t) ∈
∞⋃

k=1
	k

α , there exists ξk(t) ∈ 	k
α with lim

k→∞ ξk(t) = ξ∗(t) for ∀t ∈ I . As lim
k→∞D(fk, f ) = 0 uniformly 

for t ∈ I , then

H(Fk(t, ξ,α),F (t, ξ,α)) → 0,

for ∀t ∈ I , ∀α ∈ [0, 1].
As the graph of F : Gr(F) is compact, then inf{||a − b||2 : a ∈ Gr(F), b ∈ (Gr(F ) + N)c} > ε > 0, where ε > 0

is sufficiently small, N is the neighborhood of θ in � × Rn × [0, 1] and � is the open set of R × Rn. As F(t, ξ, α) =
[f (t, ξ)]α is upper semicontinuous, then there exists U is the neighborhood of (t, ξ∗(t), α), have F(s, ξ(s), β) ⊂
F(t, ξ∗(t), α) + εB for ∀(s, ξ(s), β) ∈ U , where B is the unit ball in Rn. Let k sufficiently large, then (t, ξk(t), α) ∈ U

and Fk(t, ξk(t), α) ⊂ F(t, ξk(t), α). And then Fk(t, ξk(t), α) ⊂ F(t, ξ∗(t), α) +εB . That is to say (t, ξk(t), α, ξk
′(t)) ∈

Gr(F) + N . By Lemma 3.7 (Convergence Theorem), we have ξ∗′(t) ∈ F(t, ξ∗(t), α). And as ξ∗(t) ∈
∞⋃

k=1
	k

α , then 

ξ∗(0) = ξ∗(T ). So ξ∗(t) ∈ 	α . So 
∞⋃

k=1
	k

α ⊂ 	α . And it is obvious that 	α ⊂
∞⋃

k=1
	k

α . Then we have 
∞⋃

k=1
	k

α = 	α .

Let ϕk(x) = σ	k
α
(x), ϕ(x) = σ	α (x), x ∈ Sn−1, then ϕk(x), ϕ(x) are continuous with respect to x, and 

lim
k→∞ϕk(x) = ϕ(x). For each fixed x, ϕk(x) is monotonously increasing, then by Dini Theorem, lim

k→∞ϕk(x) = ϕ(x)

uniformly with respect to x ∈ Sn−1.
Therefore,

H(	k
α,	α) = sup

x∈Sn−1
{|σ	k

α
(x) − σ	α(x)| : x ∈ Sn−1} → 0, k → ∞

uniformly for α ∈ [0, 1].
Then lim

k→∞D(vk, v) = lim
k→∞ sup

0≤α≤1
H(	k

α, 	α) = 0, uniformly for t ∈ I . �
Remark 4.1. From Theorem 4.1 and 4.2, if the forcing functions satisfies lim

k→∞D(fk, f ) = 0, then the periodic solu-

tions have the property: lim
k→∞D(vk, v) = 0. And if added the condition that fk is monotone, then lim

k→∞D(vk, v) = 0

uniformly for t ∈ I .

Example 4.1. For (4.1), take I = [0, 1], fk(t, ξ) = et ⊗uk +ξ, uk ∈ E1 and [uk]α = [1 + 1
k
+α, 3 + 1

k
−α], α ∈ [0, 1]. 

For (3.1), take f as Example 3.1. We have f , fk satisfies (i), (ii) in Theorem 3.2. And for condition (iii), there exists 
G = 2.5 > 0 such that whenever ||ξ0||2 > G there exist δ(ξ0) = 0.4 > 0, m(ξ0) = 0.21 > 0 such that

inf{〈ξ, ζ 〉| ζ ∈ [f (t, ξ)]0, ||ξ − ξ0||2 < δ(ξ0)} ≥ m(ξ0),

inf{〈ξ, ζ 〉| ζ ∈ [fk(t, ξ)]0, ||ξ − ξ0||2 < δ(ξ0)} ≥ m(ξ0),

for a.e. t ∈ I . Then f , fk satisfies the conditions in Theorem 4.1. So there exists the unique periodic solution vk :
[0, 1] → D1 to (4.1) with vk(0) = vk(1), where vk(t) = et (t + e

1−e ) ⊗ uk , with vk(0) = vk(1) = e
1−e ⊗ uk . And 

lim
k→∞D(vk, v) = 0.

Example 4.2. For (4.1), take I = [0, 1], fk(t, ξ) = e−t ⊗uk +2ξ, uk ∈ E1 and [uk]α = [ 1
k
+α, 2 − 1

k
−α], α ∈ [0, 1]. 

For (3.1), take I = [0, 1], f (t, ξ) = e−t ⊗ u + 2ξ, u ∈ E1 and [u]α = [α, 2 − α], α ∈ [0, 1]. We have f , fk satisfies 
(i), (ii) in Theorem 3.2. And for condition (iii), there exists G = 2

e > 0 such that whenever ||ξ0||2 > G there exist 
δ(ξ0) = 1

e > 0, m(ξ0) = 1
e2 > 0 such that

inf{〈ξ, ζ 〉| ζ ∈ [f (t, ξ)]0, ||ξ − ξ0||2 < δ(ξ0)} ≥ m(ξ0),

inf{〈ξ, ζ 〉| ζ ∈ [fk(t, ξ)]0, ||ξ − ξ0||2 < δ(ξ0)} ≥ m(ξ0),

for a.e. t ∈ I . By definitions of f , fk , we have

F1(t, ξ(t), α) ⊂ · · · ⊂ Fk(t, ξ,α) ⊂ · · · ⊂ F(t, ξ,α),
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then f , fk satisfies the conditions in Theorem 4.2. So there exists the unique periodic solution vk : [0, 1] → D1 to 
(4.1) with vk(0) = vk(1), where vk(t) = − 1

3 e2t (e−3t + e−1

e+1 ) ⊗ uk , with vk(0) = vk(1) = − 1
3 (1 + e−1

e+1 ) ⊗ uk . And 
lim

k→∞D(vk, v) = 0 uniformly for t ∈ I .

5. Conclusion and future expectations

In this paper, the periodic problems of first-order FDEs has been studied by using the differential inclusion method. 
Because of the H-derivative’s limitations, this periodic problems could not be solved. But by means of differential 
inclusion method, the existence and uniqueness of periodic solutions for first-order FDEs have been obtained. And the 
structural stability of periodic solutions has also been discussed and established. The periodic solutions could maintain 
structure stability if the forcing functions has certain perturbations. And if the perturbation forcing functions are also 
monotone, then periodic solutions are uniformly convergence. That is to say, without the monotonicity, the periodic 
solutions could maintain structure stability without uniformity.

We considered the structural stability of periodic solutions for first-order FDEs in this paper. Because in the fuzzy 
number space En, there is no Lyapunov function which exists in the sense of ordinary differential equation. How to 
find another way to replace the Lyapunov function is also interesting to discuss the stability of solutions for initial 
value problems of FDEs. And the bifurcation behaviors of solutions for initial value problems could be studied by the 
differential inclusion method in the future work.
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