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Abstract

In this paper, the structural stability for two-point boundary value problems of second order fuzzy differential equations (FDEs) 
has been studied by using differential inclusion method. In the sense of differential inclusion, this FDE is understood as a two-point 
boundary value problem of uncertain dynamical system for which exists a unique big solution and a unique solution. When the 
forcing function or boundary conditions have specific perturbations, the structural stability of big solutions is discussed by means 
of Green function. After that, by using tools of support function, the Dini Theorem and the Convergence Theorem in the differential 
inclusion theory, the structural stability of solutions has been discussed and established too.
© 2022 Elsevier B.V. All rights reserved.
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1. Introduction

To deal with the uncertainty or subjective information in the real world, fuzzy differential equations (FDEs) are 
widely used to build mathematical models. But solving the FDEs is quite different to general differential equations 
for its special subtraction. By Zadeh’s Extension Principle, the subtraction of two fuzzy numbers u = (u1, u2) and 
v = (v1, v2) is u � v = (u1 − v2, u2 − v1), where u = (u1, u2) is the parametric representation of u (see [9]). On the 
other hand, the addition operation by Zadeh’s Extension Principle is u ⊕ v = (u1 + v1, u2 + v2). So in the sense of 
Zadeh’s Extension Principle, the derivative in FDEs is different to ordinary differential equations. In addition to the 
method of Zadeh’s Extension Principle, H-derivatives and Bede’s generalized derivatives are also effective methods 
to handle this problem by defining different derivatives. These approaches achieve the solutions to first-order FDEs 
(see [6,8,24]), second-order FDEs (see [3,5,12]), fractional FDEs (see [2]) and other FDEs (see [21]). Among above 
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FDEs, the two-point boundary value problem of second-order FDEs is a classic problem. Recently, Sánchez et al. 
[29] studied this problem by using the sup-J extension principle, which is a generalization of the Zadeh’s Extension 
Principle. They discussed the solution to linear fuzzy boundary value problem with interactive fuzzy boundary value. 
For nonlinear two-point boundary value problem as follows,{

x′′(t) = f (t, x′(t), x(t)),

x(a) = A, x(b) = B,
(1.1)

where I
�= [a, b], f : I × Ec × Ec → Ec , A, B ∈ Ec , where Ec is continuous fuzzy number space. In [12], M. 

Chen et al. found the conditions to make this problem having solution under H-derivatives. Diamond [16] pointed 
out the fact that support sets of the fuzzy solutions are nondecreasing in the sense of H-derivatives for first-order 
fuzzy differential equations. This conclusion is also valid for second-order fuzzy differential equations by [12], i.e., 
(1.1) hasn’t solution under H-derivatives when the boundary condition is A = B or A > B (A > B means α-level 
sets [A]α of A and [B]α of B satisfy [B]α ⊂ [A]α). Bede’s generalized derivatives can handle this defect of H-
derivatives by using switching points (see [5,24]). R. Rodríguez-López et al. [28] also investigated a kind of periodic 
boundary value problem of impulsive fuzzy differential equations. Besides, Hüllermeier [22], Diamond et al. [17,19]
proposed that using differential inclusion could solve FDEs very well. The method of differential inclusion can also 
discuss the periodicity, stability and bifurcation behavior of FDEs which are difficult to study by other methods 
(see [16]). After differential inclusion method proposed, there are a lot of achievements by using this approach (see 
[1,7,8,10,11,13–15,23,25,30]). In [26], Li et al. solve the above two-point boundary value problem of second-order 
FDEs (1.1) by using differential inclusions. For the undamped situation of two-point boundary value problem, [9,26]
studied the existence and uniqueness of solution by consider the following undamped two-point boundary value 
problem,{

x′′(t) = f (t, x(t)),

x(a) = A, x(b) = B,
(1.2)

where I = [a, b], f : I × Ec → Ec , A, B ∈ Ec , as fuzzy differential inclusion problems:{
ξ ′′(t) ∈ f (t, ξ(t)),

ξ(a) ∈ A, ξ(b) ∈ B,
(1.3)

where I = [a, b], f : I ×R → Ec, A, B ∈ Ec , and for h ∈ R, u ∈ Ec, h ∈ u means u(h) = μu(h) > 0, where μu is 
the membership function of u. Based on the results of [9,26], this paper uses the representation of fuzzy number and 
other tools of support function, Green function, Dini theorem to study the structural stability of the solution and the 
big solution when (1.3) has some specific perturbations. The big solution of (1.3) is the solution of the corresponding 
integral equation after extending f . For the damped situation of two-point boundary value problem, [12,15,26] used 
different strategies from the undamped situation to prove the existence of solutions to (1.1). Therefore, techniques of 
this paper can not be directly applied to discuss the structural stability of (1.1).

This paper is organized as follows. Section 2 provides the basic concepts. Section 3 recalls the definitions and 
theorem of the solution and the big solution to (1.3). In Section 4, we obtained the structural stability of big solutions 
for this problem. In Section 5, the structural stability of solutions has been proved. In Section 6, the conclusion is 
given.

2. Preliminaries

Like [9,26], we present basic concepts that are used in this study.

Definition 2.1. [18] Let D1 be the set of upper semicontinuous normal fuzzy sets with compact supports in R and E1

be the set of fuzzy convex subsets of D1.

Lemma 2.1 (Stacking Theorem). [19] Let {Aα ⊂ R| 0 ≤ α ≤ 1} be a class of nonempty compact sets satisfying
(i) Aβ ⊂ Aα (0 ≤ α ≤ β ≤ 1),

(ii) Aα =
∞⋂

Aαn for any nondecreasing sequence {αn} in [0, 1] satisfying αn → α.

n=1
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Then there exists v ∈ D1 such that [v]α = Aα(0 < α ≤ 1). Especially if Aα is convex, v ∈ E1. On the other hand, if 
v ∈ D1, the α-level set [v]α satisfies (i) and (ii) above. If v ∈ E1, [v]α is convex.

The definitions and properties of Ec are given as follows.

Definition 2.2. [9] Let Ec = {u ∈ E1| u1(α) = min[u]α, u2(α) = max[u]α be continuous on [0, 1]}, i.e. u ∈ Ec satis-
fies the following conditions (i)-(v):

(i) u is normal, i.e., ∃m ∈R such that u(m) = 1,
(ii) [u]0 = cl{h ∈R|u(h) > 0} is bounded in R,
(iii) u is fuzzy convex in R,
(iv) u is upper semicontinuous on R,
(v) Denote [u]α = {h ∈ R|u(h) ≥ α} (0 < α ≤ 1), u1(α) = min[u]α, u2(α) = max[u]α (α ∈ [0, 1]), then 

u1(α), u2(α) are continuous on [0, 1].
We call u ∈ Ec continuous fuzzy number and fuzzy number in abbreviation.

Theorem 2.1. [9] For u ∈ Ec, the following (1)-(3) hold:
(1) u1(α), u2(α) are continuous on [0, 1],
(2) u1(α) is monotone increasing and u2(α) is monotone decreasing,
(3) u1(1) ≤ u2(1).
Conversely, if i(α), s(α) : [0, 1] → R satisfy (1)-(3) above, denote

u(h) =
{

sup{α ∈ [0,1]| i(α) ≤ h ≤ s(α)}, h ∈ [i(0), s(0)];
0, h /∈ [i(0), s(0)].

Then ∃u ∈ Ec such that [u]α = [i(α), s(α)], u1(α) = i(α), u2(α) = s(α), α ∈ [0, 1].

From Definition 2.2 and Theorem 2.1, u1(α) and u2(α) can be used to represent u ∈ Ec, i.e., u = (u1(α), u2(α)), 
α ∈ [0, 1], or u = (u1, u2) for simplicity.

Remark 2.1. For x ∈ R, it can be considered as a special point in Ec and represented as x = (x, x), ∀α ∈ [0, 1].

Theorem 2.2. [9] Ec is a closed convex cone in Banach space X
�= C[0, 1] ×C[0, 1], and then it is a complete metric 

space.

Let D : D1 × D1 be the metric given by D(u, v) = sup
0≤α≤1

H([u]α, [v]α), where H is the Hausdorff metric defined 

on the family Pk(R) of all compact subsets of R. It is well-known (see [18,31]) that if A and B are elements in the 
family Pkc(R) of all convex and compact subsets of R, then H(A, B) can be characterized by

H(A,B) = sup{|σA(x) − σB(x)| : x = ±1},
where σA(x) = sup{〈x, y〉 : y ∈ A}, and 〈·, ·〉 is the inner product on R. And the convexity of A and B does not affect 
the validity of this characterization. So H(A, B) = sup{|σA(x) −σB(x)| : x = ±1} is also valid for any A, B ∈ Pk(R). 
The zero in Ec is the function 0̂ : R → [0, 1] defined by

0̂(x) =
{

1, if x = 0,

0, otherwise.

Let || · ||p be Puri’s norm on Ec (see [27]), then we have ||u|| = ||u||p = D(u, ̂0), u ∈ Ec .
Denote:
C(I, X) = {x|x : I → X is continuous on I, I = [a, b] ⊂ R},
C(I, Ec) = {x|x : I → Ec is continuous on I, I = [a, b] ⊂ R}.

For C(I, X), we introduce the norm ||x||∞ = sup
t∈I

||x(t)||, ∀x ∈ C(I, X), then C(I, X) is a Banach space. C(I, Ec) is 

a closed convex cone in C(I, X) (see [13]).
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For u, v ∈ D1, u ⊂ v if and only if [u]α ⊂ [v]α (∀α ∈ [0, 1]). For {un} ⊂ D1 is monotone, if un+1 ⊂ un (n = 1, 2, ...)
or un ⊂ un+1 (n = 1, 2, ...) (see [31]).

On the fuzzy space Ec, the following properties are used in this paper.

Definition 2.3. [9] Let f : I → Ec (or X), t0 ∈ I . If ∀ε > 0, ∃δ > 0, such that ||f (t) −f (t0)|| < ε whenever t ∈ I and 
|t − t0| < δ, then we say that f is continuous at t0. If f is continuous at each point of I , we say that f is continuous 
on I .

Definition 2.4. [9] Let f : I → Ec (or X), J ∈ Ec (or X). If for any partition � of I :

a = t0 < t1 < · · · < tn−1 < tn = b,

and ∀τk ∈ [tk−1, tk] (k = 1, 2, · · · , n), we have lim
λ(�)→0

n∑
k=1

f (τk) � tk = J , where λ(�) = max
1≤k≤n

{�tk}, �tk = tk −
tk−1 (k = 1, 2, · · · , n), then we say that f is integrable on I and denote J = ∫ b

a
f (t)dt .

Proposition 2.1. [9] Let f : I → Ec be continuous on I , then f is integrable on I and∥∥∥∥∥∥
b∫

a

f (t)dt

∥∥∥∥∥∥ ≤
b∫

a

||f (t)||dt.

Lemma 2.2 (Dini Theorem). [20] If a monotone sequence of continuous real-valued functions {fn} (n = 1, 2, · · · )
converges to a continuous function f on a compact set K , then the {fn} converges uniformly to f on K .

Lemma 2.3. [17] Let 
 be an open set of R ×R, f : 
 → Ec is upper semicontinuous, and let L(·, ·, α) = [f (·, ·)]α :

 → Pkc(R) for each α ∈ [0, 1]. Then L(·, ·, α) is upper semicontinuous on 
.

Lemma 2.4 (Convergence Theorem). [4] Let F be a proper semicontinuous map from a Hausdorff locally convex 
space X to a closed convex subset of a Banach space Y. Let xk and yk be measurable functions from T to X and Y, 
respectively, where T is an interval of R. If

i) xk(·) converges almost everywhere to a function x(·) from T to X,
ii) yk(·) belongs to L1(I, Y) and converges weakly to y(·) in L1(I, Y),
iii) there exists k0 = k0(t, N) such that ∀k ≥ k0, (xk(t), yk(t)) ∈ Gr(F) + N for almost all t ∈ T and for every 

neighborhood N of 0 in X × Y, where Gr(F) is the graph of F ,
then (x(t), y(t)) ∈ Gr(F) for almost all t ∈ T , i.e., y(t) ∈ F(x(t)) for almost all t ∈ T .

3. The existence of solutions

In this section, we present the solution and big solution for two-point boundary value problem of undamped uncer-
tain dynamical system (1.3).

Like the technique of solving FDEs in [9,26], the Green function can be used to deal with it. Consider the Green 
function

G(t, s) =
{

(b−t)(a−s)
b−a

, a ≤ s ≤ t ≤ b,
(b−s)(a−t)

b−a
, a ≤ t ≤ s ≤ b,

and w(t) = A(b−t)+B(t−a)
b−a

, then w(a) = A, w(b) = B and 
∫ b

a
|G(t, s)|ds ≤ (b−a)2

8 .
By taking the α-level set of (1.3), the following class of differential inclusions are taken into consideration.

ξ ′′(t) ∈ [f (t, ξ(t))]α, ξ(a) ∈ [A]α, ξ(b) ∈ [B]α (α ∈ [0,1]). (3.1)
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If f ∈ C(I ×R, Ec), i.e., f (t, ξ(t)) is continuous on I ×R, from (3.1) we have

b∫
a

G(t, s)ξ ′′(s)ds ∈
b∫

a

G(t, s)[f (s, ξ(s))]αds,

ξ(a)(b − t) + ξ(b)(t − a)

b − a
∈ [w(t)]α,

and furthermore

ξ(t) ∈ [w(t)]α +
b∫

a

G(t, s)[f (s, ξ(s))]αds (0 ≤ α ≤ 1).

In order to study the scope of trajectories of solutions to (1.3), we need to extend [f (t, ξ(t))]α : I ×R → Pkc(R)

to Fα(t, x) : I × Ec → Pkc(R), where Pkc(R) is the set of compact convex subsets of R. For x = (x1, x2) ∈ Ec , we 
define:

Fα(t, x) = co

⎛
⎝ ⋃

ξ(t)∈[x]α
[f (t, ξ(t))]α

⎞
⎠ (0 ≤ α ≤ 1),

where co(A) is the closed convex hull of set A.

Lemma 3.1. [26] Let f ∈ C(I × R, Ec) and Fα(t, x) be extended from f by above definition. Then there exists 
F : I × Ec → Ec such that

[F(t, x)]α = Fα(t, x) (0 ≤ α ≤ 1), t ∈ I, x ∈ Ec.

Remark 3.1. From the definition of Fα(t, x) and Lemma 3.1, for x ∈ R, F(t, x) = f (t, x). This also shows that the 
above extension is reasonable.

Instead of studying (1.3), we study the following integral equation:

x(t) = w(t) +
b∫

a

G(t, s) ⊗ F(s, x(s))ds, (3.2)

where x : I → Ec, ⊗ is the scalar multiplication of Zadeh’s Extension Principle.
By [26], the definitions of solutions to (1.3) and (3.1) are given as follows.

Definition 3.1. If ξ ′(t) is absolutely continuous, ξ(a) ∈ [A]α, ξ(b) ∈ [B]α , and ξ ′′(t) ∈ [f (t, ξ(t))]α a.e. on I , then 
we call ξ(t) a solution of (3.1) (0 ≤ α ≤ 1) and �α(A, B; t) = {ξ(t)|ξ(t) is a solution of (3.1). } (0 ≤ α ≤ 1) the set of 
solutions of (3.1). If there exists v : I → D1 such that [v(t)]α = �α(A, B; t) (0 ≤ α ≤ 1), then we call v(t) a solution 
of (1.3).

Definition 3.2. The fuzzy number value function x : I → Ec satisfying (3.2) is called a big solution of (1.3).
From above definitions, the solution v : I → D1 of (1.3) is defined by solution sets �α(A, B; t) of (3.1) if [v(t)]α =

�α(A, B; t) (0 ≤ α ≤ 1). On the other hand, the big solution of (1.3) is the solution of (3.2). Next the relationship 
between the solution and the big solution will be discussed. Before that, properties of F : I × Ec → Ec will be 
introduced first.

Lemma 3.2. [26] If f : I ×R → Ec satisfies:
(i) f (t, η) is continuous on I ×R,
(ii) There exists a Lebesgue integrable function p : I →R+ such that

||f (t, η) − f (t, ζ )|| ≤ p(t)|η − ζ |,
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∀η, ζ ∈R and t ∈ I , then F : I × Ec → Ec satisfies:
(1) F(t, x) is continuous on I × Ec,
(2) ∀x, y ∈ Ec , we have

||F(t, x) − F(t, y)|| ≤ p(t)||x − y||, (t ∈ I ).

Theorem 3.1. [26] Suppose that f : I ×R → Ec satisfies:
(i) f (t, η) is continuous on I ×R,
(ii) There exists a Lebesgue integrable function p : I →R+ such that

||f (t, η) − f (t, ζ )|| ≤ p(t)|η − ζ |,
for ∀η, ζ ∈R and t ∈ I .

(iii) k = sup
t∈I

∫ b

a
|G(t, s)|p(s)ds < 1.

Then there exists a unique solution of (1.3) v : I → D1 such that v(t) ⊂ x∗(t) (t ∈ I ), where x∗ : I → Ec is the 
unique big solution of (1.3).

Remark 3.2. From Theorem 3.1, the existence and uniqueness of the solution and the big solution of (1.3) could be es-
tablished under some conditions, and the solution is contained in the corresponding big solution. By the Definition 3.2, 
the big solution of (1.3) actually the solution of integral equation (3.2). However, the introduction of the concept of 
big solution plays a crucial role in proving the existence of the solution to (1.3) by verifying the boundedness of the 
set of solutions to (3.1) (see [26]).

4. The structural stability of big solution

In section 3, the existence of big solution for two-point boundary value problem has been introduced. The big 
solution is the solution to integral equation (3.2). The structural stability of integral equation is also an interesting 
problem that we are concerned about. Next we will discuss structural stability to the integral equation (3.2) if given 
some perturbations.

4.1. Perturbations in the forcing function

Considering a certain perturbation to the forcing function as follows:{
ξ ′′(t) ∈ fn(t, ξ(t)),

ξ(a) ∈ A, ξ(b) ∈ B,
(4.1)

where I = [a, b], fn ∈ C(I ×R, Ec), A, B ∈ Ec. By taking the α-level set of (4.1), the following class of differential 
inclusions are taken into consideration.

ξ ′′(t) ∈ [fn(t, ξ(t))]α, ξ(a) ∈ [A]α, ξ(b) ∈ [B]α (α ∈ [0,1]).

Theorem 4.1. Suppose that f, fn : I × R → Ec satisfies (i), (ii) and (iii) in Theorem 3.1, and (iv) {fn(t, ξ(t))} is 
monotone with respect to n and lim

n→∞D(fn(t, ξ(t)), f (t, ξ(t)) = 0 for each t ∈ I .

Then the big solution x∗
n : I → Ec to (4.1) and the big solution x∗ : I → D1 to (1.3) satisfy lim

n→∞D(x∗
n(t), x∗(t)) =

0 uniformly with respect to t ∈ I .

Proof. By the Lemma 3.1 and Theorem 3.1, there exist big solutions x∗
n , x∗ : I → Ec , and

x∗
n(t) = w(t) +

b∫
G(t, s) ⊗ Fn(s, x

∗
n(s))ds (t ∈ I ),
a
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x∗(t) = w(t) +
b∫

a

G(t, s) ⊗ F(s, x∗(s))ds (t ∈ I ),

where Fn(t, x(t)) and F(t, x(t)) are extended from fn(t, ξ(t)) and f (t, ξ(t)), respectively. As G(t, s) never changes 
the sign on I and G(t, s) < 0. By Definition 2.3 and Proposition 2.1, we have

D(x∗
n(t), x∗(t)) = D(w(t) +

b∫
a

G(t, s) ⊗ Fn(s, x
∗
n(s))ds,w(t) +

b∫
a

G(t, s) ⊗ F(s, x∗(s))ds)

= D(

b∫
a

G(t, s) ⊗ Fn(s, x
∗
n(s))ds,

b∫
a

G(t, s) ⊗ F(s, x∗(s))ds)

≤
b∫

a

D(G(t, s) ⊗ Fn(s, x
∗
n(s)),G(t, s) ⊗ F(s, x∗(s)))ds

≤
b∫

a

|G(t, s)| · D(Fn(s, x
∗
n(s)),F (s, x∗(s)))ds

≤
b∫

a

|G(t, s)| · [D(Fn(s, x
∗
n(s)),Fn(s, x

∗(s))) + D(Fn(s, x
∗(s)),F (s, x∗(s)))]ds.

By Lemma 3.2, we have

b∫
a

|G(t, s)| · [D(Fn(s, x
∗
n(s)),Fn(s, x

∗(s))) + D(Fn(s, x
∗(s)),F (s, x∗(s)))]ds

≤
b∫

a

|G(t, s)| · [p(s)D(x∗
n(s), x∗(s)) + D(Fn(s, x

∗(s)),F (s, x∗(s)))]ds.

By the definition of || · ||∞ and the condition (iii) of Theorem 3.1, we have

b∫
a

|G(t, s)| · [p(s)D(x∗
n(s), x∗(s)) + D(Fn(s, x

∗(s)),F (s, x∗(s)))]ds

≤
b∫

a

|G(t, s)|p(s)ds||x∗
n − x∗||∞ +

b∫
a

|G(t, s)|ds||Fn − F ||∞

≤ k||x∗
n − x∗||∞ + (b − a)2

8
||Fn − F ||∞.

Therefore,

D(x∗
n(t), x∗(t)) ≤ sup

t∈I

D(x∗
n(t), x∗(t)) = ||x∗

n − x∗||∞ ≤ (b − a)2

8(1 − k)
||Fn − F ||∞.

As {fn(t, ξ(t))} is monotone with respect to n and lim
n→∞D(fn(t, ξ(t)), f (t, ξ(t)) = 0 for each t ∈ I , then 

{[fn(t, ξ(t))]α} is monotone with respect to n and

lim
n→∞ supH([fn(t, ξ(t))]α, [f (t, ξ(t))]α) = 0,
α∈I
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for each t ∈ I .
For each t ∈ I , let ϕn(t, ξ, q, α) = σ[fn(t,ξ(t))]α (q), ϕ(t, ξ, q, α) = σ[f (t,ξ(t))]α (q), where q = ±1, then ϕn(t, ξ, q, α), 

ϕ(t, ξ, q, α) are continuous with respect to (t, ξ, q, α), and lim
n→∞ϕn(t, ξ, q, α) = ϕ(t, ξ, q, α) uniformly with respect 

to α ∈ [0, 1] for each (t, ξ, q) ∈ I × [x]α × {±1}. For each fixed (t, ξ, q), {ϕn(t, ξ, q, α)} is monotonously decreasing 
or increasing with respect to n. Then ∀x ∈ Ec, [x]α ∈ Pkc(R), by Dini Theorem, lim

n→∞ϕn(t, ξ, q, α) = ϕ(t, ξ, q, α)

uniformly with respect to (t, ξ, q, α) ∈ I × [x]α × {±1} × [0, 1].
By the definition of Fn(t, x), we have

[Fn(t, x)]α = co

⎛
⎝ ⋃

ξ∈[x]α
[fn(t, ξ(t))]α

⎞
⎠ (0 ≤ α ≤ 1),

then lim
n→∞σ[Fn(t,x)]α (q) = σ[F(t,x)]α (q) uniformly with respect to (t, ξ, q, α) ∈ I ×[x]α ×{±1} ×[0, 1]. Furthermore,

lim
n→∞H([Fn(t, x)]α, [F(t, x)]α) = 0,

uniformly with respect to (t, α) ∈ I × [0, 1]. Therefore,

lim
n→∞D(Fn(t, x

∗(t)),F (t, x∗(t))) = lim
n→∞ sup

α∈[0,1]
H([Fn(t, x

∗(t))]α, [F(t, x∗(t))]α) = 0.

Then, we have

lim
n→∞||Fn − F ||∞ = lim

n→∞ sup
t∈I

D(Fn(t, x
∗(t)),F (t, x∗(t)) = 0.

Therefore,

lim
n→∞D(x∗

n(t), x∗(t)) ≤ lim
n→∞

(b − a)2

8(1 − k)
||Fn − F ||∞ = 0,

uniformly with respect to t ∈ I . �
4.2. Perturbations on boundary conditions

Considering a certain perturbation to boundary conditions as follows:{
ξ ′′(t) ∈ f (t, ξ(t)),

ξ(a) ∈ An, ξ(b) ∈ Bn,
(4.2)

where I = [a, b], f ∈ C(I ×R, Ec), An, Bn ∈ Ec . By taking the α-level set of (4.2), the following class of differential 
inclusions are taken into consideration.

ξ ′′(t) ∈ [f (t, ξ(t))]α, ξ(a) ∈ [An]α, ξ(b) ∈ [Bn]α (α ∈ [0,1]).

Theorem 4.2. Suppose that f : I × R → Ec satisfies (i), (ii) and (iii) in Theorem 3.1, and (iv) lim
n→∞D(An, A) = 0, 

lim
n→∞D(Bn, B) = 0.

Then the big solution x∗
n : I → Ec to (4.2) and the big solution x∗ : I → D1 to (1.3) satisfy lim

n→∞D(x∗
n(t), x∗(t)) =

0 uniformly with respect to t ∈ I .

Proof. By the Lemma 3.1 and Theorem 3.1, there exist big solutions x∗
n , x∗ : I → Ec , and

x∗
n(t) = wn(t) +

b∫
a

G(t, s) ⊗ F(s, x∗
n(s))ds (t ∈ I ),

x∗(t) = w(t) +
b∫
G(t, s) ⊗ F(s, x∗(s))ds (t ∈ I ),
a
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where wn(t) = An(b−t)+Bn(t−a)
b−a

.
By Definition 2.3 and Proposition 2.1, we have

D(x∗
n(t), x∗(t)) = D(wn(t) +

b∫
a

G(t, s) ⊗ F(s, x∗
n(s))ds,w(t) +

b∫
a

G(t, s) ⊗ F(s, x∗(s))ds)

≤ D(wn(t) +
b∫

a

G(t, s) ⊗ F(s, x∗
n(s))ds,w(t) +

b∫
a

G(t, s) ⊗ F(s, x∗
n(s))ds)

+ D(w(t) +
b∫

a

G(t, s) ⊗ F(s, x∗
n(s))ds,w(t) +

b∫
a

G(t, s) ⊗ F(s, x∗(s))ds)

≤ D(wn(t),w(t)) + D(

b∫
a

G(t, s) ⊗ F(s, x∗
n(s))ds,

b∫
a

G(t, s) ⊗ F(s, x∗(s))ds).

By the definition of || · ||∞ and Lemma 3.2, we have

D(wn(t),w(t)) + D(

b∫
a

G(t, s) ⊗ F(s, x∗
n(s))ds,

b∫
a

G(t, s) ⊗ F(s, x∗(s))ds)

≤ D(wn(t),w(t)) +
b∫

a

|G(t, s)|p(s)ds||x∗
n − x∗||∞.

By the definition of wn(t), w(t) and the condition (iii) of Theorem 3.1, we have

D(wn(t),w(t)) +
b∫

a

|G(t, s)|p(s)ds||x∗
n − x∗||∞

≤ D(wn(t),w(t)) + k||x∗
n − x∗||∞

= D(
An(b − t) + Bn(t − a)

b − a
,
A(b − t) + B(t − a)

b − a
) + k||x∗

n − x∗||∞

≤ 1

b − a
[D(An(b − t) + Bn(t − a),An(b − t) + B(t − a))

+ D(An(b − t) + B(t − a),A(b − t) + B(t − a))] + k||x∗
n − x∗||∞

≤ 1

b − a
[D(Bn(t − a),B(t − a)) + D(An(b − t),A(b − t))] + k||x∗

n − x∗||∞

≤ t − a

b − a
D(Bn,B) + b − t

b − a
D(An,A) + k||x∗

n − x∗||∞.

Furthermore,

D(x∗
n(t), x∗(t)) ≤ sup

t∈I

D(x∗
n(t), x∗(t))

= ||x∗
n − x∗||∞

≤ 1

1 − k
[ t − a

b − a
D(Bn,B) + b − t

b − a
D(An,A)].

As lim
n→∞D(An, A) = 0, lim

n→∞D(Bn, B) = 0, then

lim D(x∗
n(t), x∗(t)) ≤ lim

1 [ t − a
D(Bn,B) + b − t

D(An,A)]

n→∞ n→∞ 1 − k b − a b − a
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= 1

1 − k
[ lim
n→∞

t − a

b − a
D(Bn,B) + lim

n→∞
b − t

b − a
D(An,A)]

≤ 1

1 − k
[ lim
n→∞

b − a

b − a
D(Bn,B) + lim

n→∞
b − a

b − a
D(An,A)]

= 1

1 − k
[ lim
n→∞D(Bn,B) + lim

n→∞D(An,A)]
= 0,

uniformly with respect to t ∈ I . �
4.3. Perturbations on the forcing function and boundary conditions

Considering small perturbations to the forcing function and boundary conditions as follows:{
ξ ′′(t) ∈ fn(t, ξ(t)),

ξ(a) ∈ An, ξ(b) ∈ Bn,
(4.3)

where I = [a, b], fn ∈ C(I ×R, Ec), An, Bn ∈ Ec. By taking the α-level set of (4.3), the following class of differential 
inclusions are taken into consideration.

ξ ′′(t) ∈ [fn(t, ξ(t))]α, ξ(a) ∈ [An]α, ξ(b) ∈ [Bn]α (α ∈ [0,1]).

Theorem 4.3. Suppose that f, fn : I ×R → Ec satisfies (i), (ii) and (iii) in Theorem 3.1, and
(iv) {fn(t, ξ(t))} is monotone with respect to n and lim

n→∞D(fn(t, ξ(t)), f (t, ξ(t)) = 0 for each t ∈ I ,

(v) lim
n→∞D(An, A) = 0, lim

n→∞D(Bn, B) = 0.

Then the big solution x∗
n : I → Ec to (4.3) and the big solution x∗ : I → D1 to (1.3) satisfy lim

n→∞D(x∗
n(t), x∗(t)) =

0 uniformly with respect to t ∈ I .

Proof. By the Lemma 3.1 and Theorem 3.1, there exist big solutions x∗
n , x∗ : I → Ec , and

x∗
n(t) = wn(t) +

b∫
a

G(t, s) ⊗ Fn(s, x
∗
n(s))ds (t ∈ I ),

x∗(t) = w(t) +
b∫

a

G(t, s) ⊗ F(s, x∗(s))ds (t ∈ I ),

where wn(t) = An(b−t)+Bn(t−a)
b−a

, w(t) = A(b−t)+B(t−a)
b−a

.
By Definition 2.3 and Proposition 2.1, we have

D(x∗
n(t), x∗(t)) = D(wn(t) +

b∫
a

G(t, s) ⊗ Fn(s, x
∗
n(s))ds,w(t) +

b∫
a

G(t, s) ⊗ F(s, x∗(s))ds)

≤ D(wn(t) +
b∫

a

G(t, s) ⊗ Fn(s, x
∗
n(s))ds,wn(t) +

b∫
a

G(t, s) ⊗ F(s, x∗
n(s))ds)

+ D(wn(t) +
b∫

a

G(t, s) ⊗ F(s, x∗
n(s))ds,w(t) +

b∫
a

G(t, s) ⊗ F(s, x∗
n(s))ds)

+ D(w(t) +
b∫
G(t, s) ⊗ F(s, x∗

n(s))ds,w(t) +
b∫
G(t, s) ⊗ F(s, x∗(s))ds)
a a
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≤ D(

b∫
a

G(t, s) ⊗ Fn(s, x
∗
n(s))ds,

b∫
a

G(t, s) ⊗ F(s, x∗
n(s))ds)

+ D(wn(t),w(t)) + D(

b∫
a

G(t, s) ⊗ F(s, x∗
n(s))ds,

b∫
a

G(t, s) ⊗ F(s, x∗(s))ds).

By the definition of || · ||∞, Lemma 3.2 and the condition (iii) of Theorem 3.1, we have

D(

b∫
a

G(t, s) ⊗ Fn(s, x
∗
n(s))ds,

b∫
a

G(t, s) ⊗ F(s, x∗
n(s))ds)

+ D(wn(t),w(t)) + D(

b∫
a

G(t, s) ⊗ F(s, x∗
n(s))ds,

b∫
a

G(t, s) ⊗ F(s, x∗(s))ds)

≤
b∫

a

|G(t, s)|ds||Fn − F ||∞ + D(wn(t),w(t)) +
b∫

a

|G(t, s)|p(s)ds||x∗
n − x∗||∞

≤ (b − a)2

8
||Fn − F ||∞ + D(wn(t),w(t)) + k||x∗

n − x∗||∞.

By the definition of wn(t), w(t), we have

(b − a)2

8
||Fn − F ||∞ + D(wn(t),w(t)) + k||x∗

n − x∗||∞

= (b − a)2

8
||Fn − F ||∞ + D(

An(b − t) + Bn(t − a)

b − a
,
A(b − t) + B(t − a)

b − a
)

+ k||x∗
n − x∗||∞

≤ (b − a)2

8
||Fn − F ||∞ + 1

b − a
[D(An(b − t) + Bn(t − a),An(b − t) + B(t − a))

+ D(An(b − t) + B(t − a),A(b − t) + B(t − a))] + k||x∗
n − x∗||∞

≤ (b − a)2

8
||Fn − F ||∞ + 1

b − a
[D(Bn(t − a),B(t − a)) + D(An(b − t),A(b − t))]

+ k||x∗
n − x∗||∞

≤ (b − a)2

8
||Fn − F ||∞ + t − a

b − a
D(Bn,B) + b − t

b − a
D(An,A) + k||x∗

n − x∗||∞.

From (iv), (v) and the proofs of Theorem 4.1 and Theorem 4.2, we can conclude that

lim
n→∞D(x∗

n(t), x∗(t)) ≤ lim
n→∞

1

1 − k
(
(b − a)2

8
||Fn − F ||∞ + D(Bn,B) + D(An,A))

= 0,

uniformly with respect to t ∈ I . �
Example 4.1. In (1.3) and (4.1), take I = [0, 1], f (t, ξ(t)) = (α, 4 − α), α ∈ [0, 1], fn(t, ξ(t)) = (α + 1

n
, 4 − α −

1
n
), α ∈ [0, 1], A = B ∈ Ec . Then big solutions of (1.3) and (4.1) are x∗(t) = A + t (1−t)

2 [(−1) ⊗ f ] and x∗
n(t) =

A + t (1−t)
2 [(−1) ⊗ fn]. It can be concluded that lim

n→∞D(x∗
n(t), x∗(t)) = 0 uniformly with respect to t ∈ I .

Let A = B = (1 + α, 3 − α), α ∈ [0, 1]. Membership functions μx∗(h, t) and μx∗
n
(h, t) (n = 1, 3, 10) of solutions 

x∗(t) and x∗
n(t) (n = 1, 3, 10) are shown in Fig. 1. The graph d in Fig. 1 shows the membership function μx∗(h, t)

which is the case of n = ∞ by Theorem 4.1.
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Fig. 1. The illustration for membership functions of big solutions to Example 4.1. (For interpretation of the colors in the figure(s), the reader is 
referred to the web version of this article.)

The fact that solutions x∗
n(t) are closer to the solution x∗(t) as n increasing can be shown from graphs of mem-

bership functions. In this example, because perturbations are very small, graphs of different membership functions 
are similar. In order to more clearly demonstrate this fact, α-level sets of x∗(t) and x∗

n(t) are shown in Fig. 2. Fig. 2
illustrates graphs of [x∗(t)]α = [x1(t, α), x2(t, α)] and [x∗

n(t)]α = [xn
1 (t, α), xn

2 (t, α)], (α = 0, 0.5, 0.75, 1).
Fig. 2 shows that when n increases, xn

1 (t, α) and xn
2 (t, α) move closer to x1(t, α) and x2(t, α), respectively, for 

all α. It can be seen from the graph b in Fig. 2, xn
1 (t, 0.5) moves closer to x1(t, 0.5) (the red line) as n increases. 

This indicates that the solution can keep the structure stable when there are only small perturbations on the forcing 
function. By Theorem 4.1, it can be concluded that lim

n→∞D(x∗
n(t), x∗(t)) = 0 uniformly with respect to t ∈ I .

Example 4.2. In (1.3) and (4.2) take I = [0, π2 ], f (t, ξ(t)) = −ξ(t), A = B = (α, 2 − α), An = Bn = (α + 1
n
, 2 −

α + 1
n
), α ∈ [0, 1]. By Theorem 3.1, big solutions of (1.3) and (4.1) are

x∗
n(t) = wn(t) +

π
2∫

0

G(t, s) ⊗ (−x∗
n(s))ds (t ∈ I ),

x∗(t) = w(t) +
π
2∫

0

G(t, s) ⊗ (−x∗(s))ds (t ∈ I ),

where wn(t) = An(b−t)+Bn(t−a)
b−a

. From Theorem 4.2, we have lim
n→∞D(x∗

n(t), x∗(t)) = 0 uniformly with respect to 

t ∈ I .

Example 4.3. In (1.3) and (4.3), take I = [0, 1], f (t, ξ(t)) = (α, 2 − α), α ∈ [0, 1], fn(t, ξ(t)) = (α − 1
n
, 2 − α −

1 ), α ∈ [0, 1], A = B = (α, 2 −α), An = Bn = (α− 1 , 2 −α+ 1 ), α ∈ [0, 1]. Then big solutions of (1.3) and (4.3) are 

n n n
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Fig. 2. The illustration for α-level sets of big solutions to Example 4.1. The order of these solid lines from top to bottom are as follows: x1
1 (t, α), 

x3
1 (t, α), x10

1 (t, α), x1(t, α). The order of these dotted lines from top to bottom are as follows: x2(t, α), x10
2 (t, α), x3

2 (t, α), x1
2 (t, α).

x∗(t) = A + t (1−t)
2 [(−1) ⊗f ] and x∗

n(t) = An + t (1−t)
2 [(−1) ⊗fn]. It can be concluded that lim

n→∞D(x∗
n(t), x∗(t)) = 0

uniformly with respect to t ∈ I .

5. The structural stability of solutions

After discussing the structural stability of big solutions, the structural stability of solutions to (1.3) is what we 
concerned about too. Same to [14], we will discuss the structural stability of solutions to two-point boundary value 
problems if given some perturbations. Similar to section 4, three corresponding cases will be discussed.

5.1. Perturbations on the forcing function

For the two-point boundary value problem (1.3), a certain perturbation to the forcing function as (4.1), we have the 
following theorems.

Theorem 5.1. Suppose that f, fn : I × R → Ec satisfy conditions in Theorem 3.1 and (iv) lim
n→∞D(fn(t, ξ(t)), 

f (t, ξ(t)) = 0 for each t ∈ I .
Then the solution vn : I → D1 to (4.1) and the solution v : I → D1 to (1.3) satisfy lim

k→∞D(vn(t), v(t)) = 0 for each 

t ∈ I .

Proof. By the Theorem 3.1, (4.1) and (1.3) have solutions vn, v : I → D1 such that [vn(t)]α = Sn
α(A, B; t), [v(t)]α =

Sα(A, B; t) (t ∈ I, 0 ≤ α ≤ 1), respectively. Denote Sn
α = Sn

α(A, B; t), Sα = Sα(A, B; t) for simplicity. Let 
L(t, ξ(t), α) = [f (t, ξ(t))]α and Ln(t, ξ(t), α) = [fn(t, ξ(t))]α be α-level sets of f and fn, respectively.

From (iv), lim
n→∞D(fn(t, ξ(t)), f (t, ξ(t)) = lim

n→∞ sup
0≤α≤1

H(Ln(t, ξ(t), α), L(t, ξ(t), α)) = 0 for each t ∈ I , then 

lim
n→∞H(Ln(t, ξ(t), α), L(t, ξ(t), α)) = 0 uniformly with respect to α ∈ [0, 1], for each t ∈ I . Therefore, for each 

t ∈ I , ∀ε > 0, there exists K1, when n > K1 we have

Ln(t, ξ(t), α) ⊂ L(t, ξ(t), α) + 1
εB,
2
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L(t, ξ(t), α) ⊂ Ln(t, ξ(t), α) + 1

2
εB,

uniformly with respect to α ∈ [0, 1], where L(t, ξ(t), α), Ln(t, ξ(t), α) ∈ Pk(R), B is the unit ball in R. Then we 
have {

ξn
′′(t) ∈ Ln(t, ξn(t), α) ⊂ L(t, ξn(t), α) + 1

2εB,

ξn(a) ∈ [A]α, ξn(b) ∈ [B]α,

uniformly with respect to α ∈ [0, 1], for each t ∈ I .
Let lim

n→∞Sn
α = {ξ∗(t) | ξ∗(t) = lim

n→∞ ξn(t), ξn(t) ∈ Sn
α (t ∈ I )}. For each ξ∗(t) ∈ lim

n→∞Sn
α , there exists ξn(t) ∈ Sn

α

with lim
n→∞ ξn(t) = ξ∗(t) for each t ∈ I . We need to prove ξ∗(t) ∈ Sα for each t ∈ I .

As L(t, ξ(t), α) = [f (t, ξ(t))]α is the α-level set of f (t, ξ(t)) ∈ Ec, where Ec is continuous fuzzy number space, 
then L(t, ξ(t), α) is in the space Pkc(R) ⊂ Pk(R). Denote L = L(t, ξ(t), α) for simplicity. As L ∈ Pk(R), then the 
graph of L: Gr(L) is compact and inf{||a − b|| : a ∈ Gr(L), b ∈ (Gr(L) + N)c} > ε > 0, where ε > 0 is sufficiently 
small, (Gr(L) + N)c is the complement of Gr(L) + N , N is the neighborhood of θ in 
 × [0, 1] ×R, and 
 is the 
open set of R ×R.

As f (t, ξ(t)) is continuous on I × R, then L(t, ξ(t), α) = [f (t, ξ(t))]α is upper semicontinuous uniformly with 
respect to α ∈ [0, 1]. Therefore there exists U is the neighborhood of (t, ξ∗(t)) for each t ∈ I , have L(s, ξ(s), α) ⊂
L(t, ξ∗(t), α) + 1

2εB uniformly with respect to α ∈ [0, 1], for ∀(s, ξ(s)) ∈ U .
For each t ∈ I , as lim

n→∞ ξn(t) = ξ∗(t), then there exists K2, when n > K2, we have (t, ξn(t)) ∈ U . Therefore 

L(t, ξn(t), α) ⊂ L(t, ξ∗(t), α) + 1
2εB uniformly with respect to α ∈ [0, 1] when n > K2.

Let K = max {K1,K2}, when n > K , we have, for each t ∈ I , Ln(t, ξn(t), α) ⊂ L(t, ξ∗(t), α) + εB uniformly 
with respect to α ∈ [0, 1]. That is to say (t, ξn(t), α, ξn

′′(t)) ∈ Gr(L) + N uniformly with respect to α ∈ [0, 1]. By 
Lemma 2.4 (Convergence Theorem), we have ξ∗′′(t) ∈ L(t, ξ∗(t), α) uniformly with respect to α ∈ [0, 1]. As ξ∗(t) ∈
lim

n→∞Sn
α , then ξ∗(a) ∈ [A]α , ξ∗(b) ∈ [B]α . So ξ∗(t) ∈ Sα uniformly with respect to α ∈ [0, 1]. Then for each t ∈ I , we 

have lim
n→∞Sn

α ⊂ Sα uniformly with respect to α ∈ [0, 1].
On the other hand, for ∀ξ∗(t) ∈ Sα for each t ∈ I , we have{

ξ∗′′(t) ∈ L(t, ξ∗(t), α) ⊂ Ln(t, ξ
∗(t), α) + 1

2εB,

ξ∗(a) ∈ [A]α, ξ∗(b) ∈ [B]α,

uniformly with respect to α ∈ [0, 1], when n > K1.
Let {δn} be a nonnegative sequence satisfying δn > δn+1 (n = 1, 2, 3) and lim

n→∞ δn = 0. For ξ∗(t) and each δn > 0, 

there exist K3 and a absolutely continuous function ξδn(t). When n > K3, we have (t, ξδn(t)) in the neighborhood U of 
(t, ξ∗(t)), have |ξδn(t) −ξ∗(t)| < δn for each t ∈ I and ξδn(a) ∈ [A]α , ξδn(b) ∈ [B]α . In other words, (t, ξ∗(t)) is also in 
the neighborhood Uδn of (t, ξδn(t)). As fn(t, ξ(t)) is continuous on I ×R, then Ln(t, ξ, α) = [fn(t, ξ(t))]α is upper 
semicontinuous uniformly with respect to α ∈ [0, 1]. Therefore Ln(t, ξ∗(t), α) ⊂ Ln(t, ξδn(t), α) + 1

2εB uniformly 
with respect to α ∈ [0, 1]. That is to say (t, ξ∗(t), α, ξ∗′′(t)) ∈ Gr(Ln(t, ξδn(t), α)) +N uniformly with respect to α ∈
[0, 1], when n > max {K1,K3}. By Lemma 2.4 (Convergence Theorem), we have ξδn

′′(t) ∈ Ln(t, ξδn(t), α) uniformly 
with respect to α ∈ [0, 1]. So ξδn(t) ∈ Sn

α uniformly with respect to α ∈ [0, 1]. Then we have Sα ⊂ lim
n→∞Sn

α uniformly 

with respect to α ∈ [0, 1]. Therefore, for each t ∈ I , Sα = lim
n→∞Sn

α uniformly with respect to α ∈ [0, 1].
Then lim

n→∞D(vn, v) = lim
n→∞ sup

0≤α≤1
H(Sn

α, Sα) = 0 for each t ∈ I . �
Theorem 5.2. Suppose that f, fn : I ×R → Ec satisfy conditions in Theorem 3.1 and (iv) {fn(t, ξ(t))} is monotone 
with respect to n and lim

n→∞D(fn(t, ξ(t)), f (t, ξ(t)) = 0 for each t ∈ I .

Then the solution vn : I → D1 to (4.1) and the solution v : I → D1 to (1.3) satisfy lim
n→∞D(vn(t), v(t)) = 0 uni-

formly with respect to t ∈ I .

Proof. By the Theorem 3.1, (4.1) and (1.3) have solutions vn, v : I → D1 such that [vn(t)]α = Sn
α, [v(t)]α = Sα (t ∈

I, 0 ≤ α ≤ 1), respectively. Let L(t, ξ(t), α) = [f (t, ξ(t))]α and Ln(t, ξ(t), α) = [fn(t, ξ(t))]α be α-level sets of f
and fn, respectively.
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As {fn(t, ξ(t))} is monotone, two situations will be discussed to prove that lim
n→∞D(vn(t), v(t)) = 0 uniformly with 

respect to t ∈ I .
(1), If {fn(t, ξ(t))} is monotone decreasing, i.e., fn+1 ⊂ fn, (n = 1, 2, ...).
From condition (iv), we have

L(t, ξ(t), α) ⊂ · · · ⊂ Ln+1(t, ξ(t), α) ⊂ Ln(t, ξ(t), α) ⊂ · · · ⊂ L1(t, ξ(t), α),

uniformly with respect to α ∈ [0, 1], where L(t, ξ(t), α), Ln(t, ξ(t), α) ∈ Pk(R).
For each t ∈ I , ∀ξ∗(t) ∈ Sα , we have{

ξ∗′′(t) ∈ L(t, ξ∗(t), α) ⊂ · · · ⊂ Ln(t, ξ
∗(t), α) ⊂ · · · ⊂ L1(t, ξ

∗(t), α),

ξ∗(a) ∈ [A]α, ξ∗(b) ∈ [B]α,

then ξ∗(t) ∈ Sn
α and Sα ⊂ · · · ⊂ Sn

α ⊂ · · · ⊂ S1
α . It can be concluded that Sα ⊂

∞⋂
n=1

Sn
α uniformly with respect to 

α ∈ [0, 1].
For ∀ξ∗(t) ∈

∞⋂
n=1

Sn
α , there exists ξn(t) ∈ Sn

α with lim
n→∞ ξn(t) = ξ∗(t) for each t ∈ I .

As lim
n→∞D(fn(t, ξ(t)), f (t, ξ(t))) = 0 for each t ∈ I , then

H(Ln(t, ξ(t), α),L(t, ξ(t), α)) → 0,

uniformly with respect to α ∈ [0, 1]. Further Ln(t, ξ(t), α) ⊂ L(t, ξ(t), α) + 1
2εB uniformly with respect to α ∈ [0, 1]

when n is sufficiently large.
As f (t, ξ(t)) is continuous on I × R, then L(t, ξ(t), α) = [f (t, ξ(t))]α is upper semicontinuous uniformly with 

respect to α ∈ [0, 1]. Same to the proof of Theorem 5.1, there exists U is the neighborhood of (t, ξ∗(t)), have 
L(s, ξ(s), α) ⊂ L(t, ξ∗(t), α) + 1

2εB uniformly with respect to α ∈ [0, 1] for ∀(s, ξ(s)) ∈ U , ε > 0 is sufficiently 
small.

As lim
n→∞ ξn(t) = ξ∗(t) for each t ∈ I , then (t, ξn(t)) ∈ U when n is sufficiently large. Therefore L(t, ξn(t), α) ⊂

L(t, ξ∗(t), α) + 1
2εB uniformly with respect to α ∈ [0, 1].

Furthermore, for each t ∈ I , Ln(t, ξn(t), α) ⊂ L(t, ξ∗(t), α) + εB uniformly with respect to α ∈ [0, 1]. That is 
to say (t, ξn(t), α, ξn

′′(t)) ∈ Gr(L) + N uniformly with respect to α ∈ [0, 1], where N is defined in the proof of 
Theorem 5.1. By Lemma 2.4 (Convergence Theorem), we have ξ∗′′(t) ∈ L(t, ξ∗(t), α) uniformly with respect to 
α ∈ [0, 1].

As ξ∗(t) ∈
∞⋂

n=1
Sn

α , then ξ∗(a) ∈ [A]α , ξ∗(b) ∈ [B]α . So ξ∗(t) ∈ Sα uniformly with respect to α ∈ [0, 1].

Then we have Sα =
∞⋂

n=1
Sn

α uniformly with respect to α ∈ [0, 1] for each t ∈ I .

Let ϕn(t, x, α) = σSn
α
(x), ϕ(t, x, α) = σSα (x), (t, x, α) ∈ I × {±1} × [0, 1], where σA(x) = sup{〈x, y〉 : y ∈ A}

be a support function and 〈·, ·〉 is the inner product on R, then ϕn(t, x, α), ϕ(t, x, α) are continuous with respect 
to (t, x), and lim

n→∞ϕn(t, x, α) = ϕ(t, x, α) uniformly with respect to α ∈ [0, 1] for each (t, x). For each fixed (t, x), 

{ϕn(t, x, α)} is monotonously decreasing, then by Dini Theorem, lim
n→∞ϕn(t, x, α) = ϕ(t, x, α) uniformly with respect 

to (t, x, α) ∈ I × {±1} × [0, 1].
Therefore,

H(Sn
α,Sα) = sup

x∈{±1}
{|σSn

α
(x) − σSα (x)| : x = ±1} → 0, n → ∞,

uniformly with respect to (t, α) ∈ I × [0, 1].
Then lim

n→∞D(vn, v) = lim
n→∞ sup

0≤α≤1
H(Sn

α, Sα) = 0 uniformly with respect to t ∈ I .

(2), If {fn(t, ξ(t))} is monotone increasing, i.e., fn ⊂ fn+1, (n = 1, 2, ...).
Similar to the discussion of (1), we can get the corresponding conclusion.
Therefore, lim

n→∞D(vn(t), v(t)) = lim
n→∞ sup

0≤α≤1
H(Sn

α, Sα) = 0 uniformly with respect to t ∈ I when {fn(t, ξ(t))} is 

monotone. �
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5.2. Perturbations on boundary conditions

For the two-point boundary value problem (1.3), if perturbations on boundary conditions as (4.2), then we have the 
following theorem.

Theorem 5.3. Suppose that f : I ×R → Ec and boundary conditions satisfy conditions in Theorem 4.2.
Then the solution vn : I → D1 to (4.2) and the solution v : I → D1 to (1.3) satisfy lim

k→∞D(vn(t), v(t)) = 0 for each 

t ∈ I .

Proof. By the Theorem 3.1, (4.2) and (1.3) have solutions vn, v : I → D1 such that [vn(t)]α = Sn
α(An, Bn; t), 

[v(t)]α = Sα(A, B; t) (t ∈ I, 0 ≤ α ≤ 1), respectively. Denote Sn
α = Sn

α(An, Bn; t), Sα = Sα(A, B; t) for simplic-
ity. Let L(t, ξ(t), α) = [f (t, ξ(t))]α = (f1(α), f2(α)) be the α-level set of f (t, ξ(t)).

For ∀ξ∗(t) ∈ lim
n→∞Sn

α , there exists ξn(t) ∈ Sn
α with lim

n→∞ ξn(t) = ξ∗(t) for each t ∈ I . We have

{
ξn

′′(t) ∈ L(t, ξn(t), α),

ξn(a) ∈ [An]α, ξn(b) ∈ [Bn]α.

As f (t, ξ(t)) is continuous on I × R, then L(t, ξ(t), α) = [f (t, ξ(t))]α is upper semicontinuous uniformly with 
respect to α ∈ [0, 1]. Same to the proof of Theorem 5.1, there exists U is the neighborhood of (t, ξ∗(t)), have 
L(s, ξ(s), α) ⊂ L(t, ξ∗(t), α) + εB uniformly with respect to α ∈ [0, 1], for ∀(s, ξ(s)) ∈ U , ε > 0 is sufficiently 
small.

As lim
n→∞ ξn(t) = ξ∗(t) for each t ∈ I , then (t, ξn(t)) ∈ U when n is sufficiently large. Therefore L(t, ξn(t), α) ⊂

L(t, ξ∗(t), α) + εB uniformly with respect to α ∈ [0, 1]. That is to say (t, ξn(t), α, ξn
′′(t)) ∈ Gr(L) + N uniformly 

with respect to α ∈ [0, 1], where N is defined in the proof of Theorem 5.1. By Lemma 2.4 (Convergence Theorem), 
we have ξ∗′′(t) ∈ L(t, ξ∗(t), α) uniformly with respect to α ∈ [0, 1], for each t ∈ I .

As lim
n→∞D(An, A) = 0, lim

n→∞D(Bn, B) = 0 and ξ∗(t) ∈ lim
n→∞Sn

α , then ξ∗(a) = lim
n→∞ ξn(a) ∈ lim

n→∞[An]α = [A]α
uniformly with respect to α ∈ [0, 1], ξ∗(b) = lim

n→∞ ξn(b) ∈ lim
n→∞[Bn]α = [B]α uniformly with respect to α ∈ [0, 1]. So 

ξ∗(t) ∈ Sα uniformly with respect to α ∈ [0, 1], for each t ∈ I .
Then we have lim

n→∞Sn
α ⊂ Sα uniformly with respect to α ∈ [0, 1].

On the other hand, for each t ∈ I , ∀ξ∗(t) ∈ Sα , we have{
ξ∗′′(t) ∈ L(t, ξ∗(t), α),

ξ∗(a) ∈ [A]α, ξ∗(b) ∈ [B]α,

uniformly with respect to α ∈ [0, 1].
Same to the proof of Theorem 5.1, for each t ∈ I , δn > 0 and ξ∗(t), there exists (t, ξδn(t), α) in the neighborhood 

U of (t, ξ∗(t)), have |ξδn(t) − ξ∗(t)| < δn for each t ∈ I and ξδn(a) ∈ [An]α , ξδn(b) ∈ [Bn]α . Then (t, ξ∗(t)) is also in 
the neighborhood Uδn of (t, ξδn(t)). As f (t, ξ(t)) is continuous on I ×R, then L(t, ξ(t), α) = [f (t, ξ(t))]α is upper 
semicontinuous uniformly with respect to α ∈ [0, 1]. Therefore L(t, ξ∗(t), α) ⊂ L(t, ξδn(t), α) + 1

2εB uniformly with 
respect to α ∈ [0, 1]. That is to say (t, ξ∗(t), α, ξ∗′(t)) ∈ Gr(L(t, ξδn(t), α)) + N uniformly with respect to α ∈ [0, 1]. 
By Lemma 2.4 (Convergence Theorem), we have ξδn

′′(t) ∈ L(t, ξδn(t), α) uniformly with respect to α ∈ [0, 1]. So 
ξδn(t) ∈ Sn

α uniformly with respect to α ∈ [0, 1], for each t ∈ I .
Then we have Sα ⊂ lim

n→∞Sn
α uniformly with respect to α ∈ [0, 1], for each t ∈ I .

Therefore, Sα = lim
n→∞Sn

α uniformly with respect to α ∈ [0, 1], for each t ∈ I .

Then lim
n→∞D(vn, v) = lim

n→∞ sup
0≤α≤1

H(Sn
α, Sα) = 0 for each t ∈ I . �

5.3. Perturbations on the forcing function and boundary conditions

If perturbations occur both on boundary conditions and the forcing function as (4.3) for the two-point boundary 
value problem (1.3), then we have the following theorem.
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Theorem 5.4. Suppose that f, fn : I ×R → Ec and boundary conditions satisfy conditions in Theorem 3.1, and
(iv) lim

n→∞D(fn(t, ξ(t)), f (t, ξ(t)) = 0 for each t ∈ I ,

(v) lim
n→∞D(An, A) = 0, lim

n→∞D(Bn, B) = 0.

Then the solution vn : I → D1 to (4.3) and the solution v : I → D1 to (1.3) satisfy lim
k→∞D(vn(t), v(t)) = 0 for each 

t ∈ I .

Proof. By the Theorem 3.1, (4.3) and (1.3) have solutions vn, v : I → D1 such that [vn(t)]α = Sn
α, [v(t)]α = Sα (t ∈

I, 0 ≤ α ≤ 1), respectively. Let L(t, ξ(t), α) = [f (t, ξ(t))]α and Ln(t, ξ(t), α) = [fn(t, ξ(t))]α be α-level sets of f
and fn, respectively.

Similar to the proof of Theorem 5.1, we have{
ξn

′′(t) ∈ Ln(t, ξn(t), α) ⊂ L(t, ξn(t), α) + 1
2εB,

ξn(a) ∈ [An]α, ξn(b) ∈ [Bn]α,

uniformly with respect to α ∈ [0, 1], for each t ∈ I .
Let lim

n→∞Sn
α = {ξ∗(t) | ξ∗(t) = lim

n→∞ ξn(t), ξn(t) ∈ Sn
α (t ∈ I )}. For each ξ∗(t) ∈ lim

n→∞Sn
α , there exists ξn(t) ∈ Sn

α

with lim
n→∞ ξn(t) = ξ∗(t) for each t ∈ I . We need to prove ξ∗(t) ∈ Sα for each t ∈ I .

Same to the proof of Theorem 5.1, we have ξ∗′′(t) ∈ L(t, ξ∗(t), α) uniformly with respect to α ∈ [0, 1], for each 
t ∈ I . Same to the proof of Theorem 5.3, we have ξ∗(a) = lim

n→∞ ξn(a) ∈ lim
n→∞[An]α = [A]α uniformly with respect 

to α ∈ [0, 1], for each t ∈ I , ξ∗(b) = lim
n→∞ ξn(b) ∈ lim

n→∞[Bn]α = [B]α uniformly with respect to α ∈ [0, 1], for each 

t ∈ I . So ξ∗(t) ∈ Sα uniformly with respect to α ∈ [0, 1], for each t ∈ I .
Then we have lim

n→∞Sn
α ⊂ Sα uniformly with respect to α ∈ [0, 1], for each t ∈ I .

On the other hand, for each t ∈ I , ∀ξ∗(t) ∈ Sα , we have{
ξ∗′′(t) ∈ L(t, ξ∗(t), α) ⊂ Ln(t, ξ

∗(t), α) + 1
2εB,

ξ∗(a) ∈ [A]α, ξ∗(b) ∈ [B]α,

uniformly with respect to α ∈ [0, 1].
Same to the proof of Theorem 5.1, for each t ∈ I , δn > 0 and ξ∗(t), there exists (t, ξδn(t)) in the neighborhood 

U of (t, ξ∗(t)), have |ξδn(t) − ξ∗(t)| < δn for each t ∈ I and ξδn(a) ∈ [An]α uniformly with respect to α ∈ [0, 1], 
ξδn(b) ∈ [Bn]α uniformly with respect to α ∈ [0, 1]. Same to the proof of Theorem 5.3, we have ξδn(t) ∈ Sn

α uniformly 
with respect to α ∈ [0, 1], for each t ∈ I .

Then we have Sα ⊂ lim
n→∞Sn

α uniformly with respect to α ∈ [0, 1], for each t ∈ I .

Therefore, Sα = lim
n→∞Sn

α uniformly with respect to α ∈ [0, 1], for each t ∈ I .

Then lim
n→∞D(vn, v) = lim

n→∞ sup
0≤α≤1

H(Sn
α, Sα) = 0 for each t ∈ I . �

Remark 5.1. If An, Bn is monotone and lim
n→∞An = A, lim

n→∞Bn = B . Then the conclusions of Theorem 5.3 and 

Theorem 5.4 are also valid.

Remark 5.2. If the monotonicity of An, Bn and fn are consistent, then solutions converge uniformly with respect to 
t ∈ I . The proof of this claim can be derived from Theorem 5.2-5.4.

Remark 5.3. The solution v(t) for fuzzy differential inclusion problems (1.3) could not directly be represented by the 
integral of f (t, ξ(t)) like the big solution x(t). So the way to discuss of structural stability of the solution in section 5
is different from the method to prove the structural stability of big solutions in section 4.

Example 5.1. In (1.3) and (4.1), take I = [0, 1], A = B ∈ Ec, f (t, ξ(t)) = (α, 2 − α), α ∈ [0, 1], fn(t, ξ(t)) =
(α − 1

n
, 2 − α − 1

n
), α ∈ [0, 1]. Then solutions of (1.3) and (4.1) are v(t) = A + t (1−t)

2 [(−1) ⊗ f ], vn(t) = A +
t (1−t)

2 [(−1) ⊗ fn]. It can be concluded that lim D(vn(t), v(t)) = 0 uniformly with respect to t ∈ I .

n→∞
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Fig. 3. The illustration for membership functions of solutions to Example 5.3.

Example 5.2. In (1.3) and (4.2) take I = [0, π2 ], f (t, ξ(t)) = −ξ(t), A = B = (α, 2 − α), An = Bn = (α − 1
n
, 2 −

α − 1
n
), α ∈ [0, 1]. Then solutions of (1.3) and (4.1) are v(t) = A(cos t + sin t), vn(t) = An(cos t + sin t). It can be 

concluded that lim
n→∞D(vn(t), v(t)) = 0 uniformly with respect to t ∈ I .

Example 5.3. In (1.3) and (4.1), take I = [0, 1], f (t, ξ(t)) = (α, 2 − α), α ∈ [0, 1], fn(t, ξ(t)) = (α − 1
n
, 2 − α −

1
n
), α ∈ [0, 1], A = B = (α, 2 − α), An = Bn = (α − 1

n
, 2 − α + 1

n
), α ∈ [0, 1]. In this example the big solutions 

are equal to its corresponding solution. Solutions of (1.3) and (4.1) are v(t) = x∗(t) = A + t (1−t)
2 [(−1) ⊗ f ] and 

vn(t) = x∗
n(t) = An + t (1−t)

2 [(−1) ⊗ fn].
Membership functions μv(h, t) and μvn(h, t) (n = 1, 3, 10) of solutions v(t) and vn(t) (n = 1, 3, 10) are shown in 

Fig. 3. The graph d in Fig. 3 also shows that μvn(h, t) move closer to μv(h, t) (the red curved surface) as n increasing.
The fact that solutions vn(t) are closer to the solution v(t) as n increasing can also be shown from graphs of α-

level sets of v(t) and vn(t). Fig. 4 illustrates graphs of [v(t)]α = [v1(t, α), v2(t, α)] and [vn(t)]α = [vn
1 (t, α), vn

2 (t, α)], 
(α = 0, 0.5, 0.75, 1).

Fig. 4 shows that when n increases, vn
1 (t, α) and vn

2 (t, α) move closer to v1(t, α) and v2(t, α), respectively, for all 
α. It can be seen from the graph c in Fig. 2, vn

2 (t, 0.75) moves closer to v2(t, 0.75) (the red dotted line) as n increases. 
This indicates that the solution can keep the structure stable when there are only small perturbations on the forcing 
function and boundary conditions. By Theorem 5.4, it can be concluded that lim

n→∞D(vn(t), v(t)) = 0 uniformly with 

respect to t ∈ I .

6. Conclusion and future expectations

This paper investigated the structural stability for two-point boundary value problem of FDEs understood as corre-
sponding differential inclusions. In the sense of differential inclusion, the structural stability of the big solution and the 
solution have been established respectively. The existence of the big solution is essential in the proof of the existence 
to the solution. On the other hand, the big solution to the two-point boundary value problem actually the solution to the 
112



R. Dai and M. Chen Fuzzy Sets and Systems 453 (2023) 95–114
Fig. 4. The illustration for α-level sets of solutions to Example 5.3. The order of these solid lines from top to bottom are as follows: v1(t, α), 
v10

1 (t, α), v3
1(t, α), v1

1(t, α). The order of these dotted lines from top to bottom are as follows: v1
2(t, α), v3

2(t, α), v10
2 (t, α), v2(t, α).

corresponding fuzzy integral equation by extending the forcing function. To discuss the structural stability of the big 
solution is to discuss the structural stability of the fuzzy integral equation. The Convergence Theorem in differential 
inclusion theory is crucial to prove the structural stability of the solution. The monotonicity of forcing functions and 
boundary conditions is close to the uniformity of convergence to solutions and big solutions by Dini Theorem.

In this paper, the undamped situation to two-point boundary value problem of second-order FDEs has been consid-
ered. For the damped situation, different strategies are used to prove the existence of solution. Therefore, methods and 
techniques of this paper can not be directly applied to the damped situation. In the future work, the general situation 
of these problems is also interesting to study.
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